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1

PHYSICS OF THE NAVIER-STOKES
EQUATIONS

1 Geometry of Deformations

A bounded open, connected set in Eo ⊂ RN deforms in time to E in the
sense that points y ∈ Eo are in one-to-one correspondence with points x ∈ E
through smooth, non-intersecting trajectories t → x(t) such that x(0) = y
and x(t) = x. This defines a flow map and a velocity field

x = Φ(y, t), v(x, t) = Φt(y, t). (1.1)

The functions Φ(·, t) may be regarded as a family of transformations defined
in Eo and parametrized with t. These transformations will be assumed to be
smooth and invertible independent of t. In the Lagrangian formalism, kine-
matic informations on x(t) ∈ E are provided by the trajectories t → x(t)
independently of their membership to E, as an open connected subset of RN ,
this bearing a role only in the determination of such paths ([17]). In the Eu-
lerian formalism, kinematic informations on points x ∈ E are provided by the
flow map Φ(·, t), which bears the “globality” of Eo and E ([9, 10]). In both
formalisms these quantities must coincide. Therefore ẋ = v(x, t) and

ẍ =
d

dt
ẋ =

∂

∂t
v(x, t) + ẋ · ∇xv = Dtv (1.2)

where the operator Dt formally defined by

Dt =
∂

∂t
+ v · ∇x (1.3)

is the total or material derivative along Lagrangian paths. For t fixed, the
Jacobian of the transformation Φ(·, t) is

J(x, t) = J [Φ(y, t)] = det

(
∂Φi(y, t)

∂yj

)
= Aij

∂Φk(y, t)

∂yj
δik,
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where Aij is the determinant of the algebraic complement of the (ij)th entry
of the Jacobian matrix ∇Φ.

Here, and in the sequel of this first chapter, summation over repeated
indices is assumed.

Proposition 1.1 (Euler [9]) Jt = J div v.

Proof. From the previous expression of J1

Jt(x, t) =
∂

∂t
det

(
∂Φi(y, t)

∂yj

)
= Aij

∂

∂yj

∂Φi(y, t)

∂t

= Aij
∂vi
∂yj

= Aij
∂vi
∂xk

∂Φk(y, t)

∂yj
=
∂vi
∂xi

J.

1.1 Incompressible Deformations

If an infinitesimal portion about any y ∈ Eo moves by possibly changing its
shape and/or configuration, but keeping fixed its infinitesimal volume, then
Jt = 0 and consequently div v = 0 and the deformation is called incompress-
ible. Vice versa, a deformation is incompressible if and only if div v = 0.

1.2 The Equation of Continuity

Let G ⊂ RN be open and let E(t) ⊂ G be a deforming sub-domain of G with
smooth boundary ∂E(t). For a smooth function (x, t) → ρ(x, t) defined in a
neighborhood of E(t), by the previous proposition

d

dt

∫
E(t)

ρ(x, t)dx =
d

dt

∫
Eo

ρ(Φ(y, t), t)Jdy

=

∫
Eo

d

dt
[ρ(Φ(y, t), t) J ] dy

=

∫
Eo

[(Φt · ∇xρ+ ρt) J + ρJt] dy

=

∫
Eo

[ρt + div(ρv)] Jdy

=

∫
E(t)

[ρt + div(ρv)] dx.

If ρ(x, t) is the material density of a body occupying the domain G, then for
every deforming subset E(t) ⊂ G

1The derivative of the determinant of N×N matrix is the sum of N determinants
obtained from the original matrix upon substitution of each row(column) by the
row(column) of the corresponding derivatives.



2 Cardinal Equations 3∫
E(t)

ρ(x, t) dx = mass of the body in E(t).

If elements of G evolve conserving their mass, then

d

dt

∫
E(t)

ρ(x, t)dx = 0

for all deforming sub-domains E(t) ⊂ G. Since E(t) ⊂ G is arbitrary, local
deformations of G preserve the mass if and only if

ρt + div(ρv) = 0 pointwise in G.

This is the continuity equation and expresses conservation of mass.

2 Cardinal Equations

Whereas in the previous section we were working in RN with N ≥ 2, now
we choose N = 3. Along the motion, points x ∈ E ⊂ G are acted upon by
a material distributions of forces f(x, ẋ, t)ρ(x, t)dx (f is a specific force, that
is, force per unit mass), and by reactions acting on ∂E due to the remaining
portion G−E which opposes the possible deformation of E. These are apriori
unknown, depend on the material structure of G, and should not depend
on the particular sub-domain E ⊂ G. In the Cauchy formalism they are
represented by a smooth vector-valued function

G× S1 × R 3 (x,n, t)→ T(x,n, t) ∈ R3

where S1 is the unit sphere in R3. Then, assuming that ∂E is smooth, reaction
forces of G− E, acting on ∂E are described by

{reactions opposing deformations of E} =

∫
∂E

T(x,n, t)dσ,

where dσ is the surface measure on ∂E and n is the outward unit normal
to ∂E at x ∈ ∂E. The component (T · n)n of T along n is the traction or
compression force, whereas the component T− (T ·n)n tangent to ∂E at x is
the shear force. By d’Alembert principle the motion of any sub-domain E ⊂ G
is a sequence of instantaneous equilibrium states, parameterized with time,
of all forces acting on that portion, including the reactions to deformation.
Thus, ∫

E

[ẍ− f(x, ẋ, t)]ρ dx =

∫
∂E

T(x,n, t) dσ, (2.1)∫
E

x ∧ [ẍ− f(x, ẋ, t)]ρ dx =

∫
∂E

x ∧T(x,n, t) dσ (2.2)

for all sub-domains E ⊂ G.
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Lemma 2.1 T(·,n, t) = −T(·,−n, t).

Proof. Fix P ∈ G and n ∈ S1. For 0 < ε, δ � 1 consider the disc Dε(P )
centered at P and radius ε, normal to n, and the right cylinder Cδ(P ) of base
Dε(P ) and height δ. Write (2.1) over Cδ(P ) and let δ → 0 by keeping ε > 0
fixed, to obtain ∫

Dε(P )

T(x,n, t) dσ = −
∫
Dε(P )

T(x,−n, t) dσ

Divide both sides by |Dε(P )| and let ε→ 0.

3 The Stress Tensor and Cauchy’s Theorem

Having fixed a triad Σ = {O; e1, e2, e3}, represent n ∈ S1 by its director
cosines n = (α1, α2, α3) with respect to the coordinate axes of Σ.

Theorem 3.1 (Cauchy). For all n = (α1, α2, α3) ∈ S1

T(·,n, t) = αiT (·, ei, t) .

Proof. Fix P ∈ G and n ∈ S1 and write down (2.1) where E is the tetrahedron
with vertex in P , height 0 < ε � 1, base 4ABC normal to n, and faces
4APB,4BPC,4CPA, parallel to the coordinate planes. By setting ∆σ =
|∆ABC|, one has |E| = 1

3ε∆σ, and

|∆APB| = α3∆σ, |∆BPC| = α1∆σ, |∆APC| = α2∆σ.

For these choices, (2.1) takes the form∫
E

[ẍ− f(x, ẋ, t)]ρdx =

∫
4ABC

T(x,n, t)dσ +

∫
4BPC

T (x,−e1, t) dσ

+

∫
4APC

T (x,−e2, t) dσ +

∫
4APB

T (x,−e3, t) dσ

Dividing both sides by ∆σ, gives

ε

3|E(t)|

∫
E

[ẍ− f(x, ẋ, t)]ρdx =
1

|∆ABC|

∫
∆ABC

T(x,n, t)dσ

+
α1

|∆BPC|

∫
∆BPC

T (x,−e1, t) dσ

+
α2

|∆APC|

∫
∆APC

T (x,−e2, t) dσ

+
α3

|∆APB|

∫
4APB

T (x,−e3, t) dσ.

Let ε → 0 by keeping the vertex P of the tetrahedron fixed and the base
4ABC normal to n.
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While computed at ei, the vectors T (·, ei, t), need not be directed along
the homologous coordinate axes. The components τij(·, t) = T (·, ej , t) · ei
of T (·, ej , t) along ei, define a matrix

T = (τij) =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33


called stress tensor. The entries τii are traction or compression stresses and
τij , for i 6= j are shear stresses. The shear force acting on an infinitesimal
plane surface normal to e1 is τ21e2 + τ31e3. In general

{shear force relative to ei} =
∑
j 6=i

τjiej .

Corollary 3.1 T(·,n, t) = T · n = (τij) n.

Proof. From the definitions and Theorem 3.1

T(·,n, t) = αjT (·, ej , t) = αj [T (·, ej ; t) · ei] ei

= α1

 τ11

τ21

τ31

+ α2

 τ12

τ22

τ32

+ α3

 τ13

τ23

τ33

 =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

α1

α2

α3

 = T · n.

Corollary 3.2 Let G ⊂ R3 be an open set identified with a material system
of density ρ(·, t), whose points x ∈ G are in motion under the external force
density f(x, ẋ, t) and the internal stress tensor T. Then

[ẍ− f(x, ẋ, t)]ρ = div T in G. (3.1)

Proof. Let E be any portion of G with smooth boundary ∂E. By the Gauss-
Green theorem and Corollary 3.1∫

∂E

T(x,n, t) dσ =

∫
∂E

T · n dσ =

∫
E

divT dx,

Therefore, (2.1) takes the form∫
E

[ẍ− f(x, ẋ, t)]ρ dx =

∫
E

div T dx

for all sub-domains E ⊂ G.



6 1 PHYSICS OF THE NAVIER-STOKES EQUATIONS

3.1 Symmetry of the Stress Tensor

Proposition 3.1 (τij) = (τji).

Proof. By the Gauss-Green theorem∫
∂E

x ∧T(x,n, t) dσ =

∫
∂E

xhτijeh ∧ eiαj dσ

=

∫
E

∂

∂xj
(τijxh) eh ∧ ei dx

=

∫
E

∂τij
∂xj

xh eh ∧ ei dx+

∫
E

τijδhj eh ∧ ei dx

=

∫
E

x ∧ divT dx−
∫
E

τijei ∧ ej dx

Put this in the second cardinal equation (2.2) and take into account (3.1) to
obtain∫

E

τijei ∧ ejdx =

∫
E

[(τ23 − τ32) e1 + (τ31 − τ13) e2 + (τ12 − τ21) e3] dx = 0

for all sub-domains E ⊂ G.

3.2 Miscellaneous Remarks

The matrix T is intrinsic to the system and independent of its representations
in the following sense. Let Σ′ = {O; e′1, e

′
2, e
′
3} be a new triad obtained by Σ

by a rotation of the coordinate axes realized by a unitary matrix U , so that
in particular e′j = Uej . By Corollary 3.1

τ ′ij = T
(
·, e′j , t

)
· e′i = (τhk)Uej · Uei = eti

[
U t (τhk)U

]
ej =

[
U t (τhk)U

]
ij
.

The tensor T is a linear map in R3 whose matrix (τij) is a representative. We
will call stress tensor both T and its matrix representations.

The unknowns of the motion are the trajectories t → x(t) of the points
of G, the density function ρ(·, t) and the 9 components τij of T. The second
cardinal equation (2.2), which amounts to 3 scalar equations, has been used
to establish the symmetry of T and thus reduce by 3 the unknowns of the
motions. The remaining first cardinal equation, in the pointwise form (3.1),
amounts to 3 scalar equations, which alone are insufficient to resolve the mo-
tion. One needs to provide additional information on the material structure
and on the tensorial state of the system both in the interior of G and on
its boundary ∂G. For example for rigid systems ρ = const, and the T is the
rigidity constraint.
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4 Perfect Fluids and Cardinal Equations

A fluid is a continuum material system, whose equilibrium configurations are
possible if and only if the stress tensor T is proportional to the identity I, that
is if

T(·,n) = T · n = −p(·) n in steady state,

where p(·) is a smooth function defined in G, called pressure. This formula is a
mathematical rendering of the Pascal principle, by which the pressure in any
point of the fluid, exerts equal force by unit surface, in all directions ([34]).
This mathematical definition of fluid reflects the intuitive idea of a material
continuum system that does not oppose the mutual sliding of its ideal internal
layers. If in the fluid at rest the shear components of its stress tensor were not
zero, these would generate an incipient shearing of internal layers, since the
system does not have a mechanism to oppose it. Likewise, an ideal material
surface traced in the fluid at rest, remains in equilibrium only if acted upon by
forces normal to it. In a real fluid in motion, the kinematic viscosity generates
shear stresses that oppose layer sliding. Then real fluids are classified in more
viscous (oil, paraffin, etc.) and less viscous (alcohol, ether, gas, etc.) according
to the size of these shear stresses. A real fluid is ideal or perfect if the shear
stresses are negligible even in dynamic regime, that is if

T(·,n, t) = T · n = −p(·, t) n in G and for all times. (4.1)

In such a case divT = −∇p(·, t) and (3.1) takes the form

ρ[ẍ− f(x, ẋ, t)] +∇p = 0 in G for all t. (4.2)

Equation (4.1) is the constitutive law of ideal fluids and (4.2) are the cardinal
or the momentum equations of an ideal fluid.

5 Rotations and Deformations

Let v(·, t) be the velocity field generated by the flow map in (1.1) and assume
that the fluid at time t undergoes an elemental rigid motion of characteristics
v (xo, t) and ω, where xo is an arbitrary, but fixed point in the instantaneously
rigid fluid. By the Poisson formula

v(x, t) = v (xo, t) + ω ∧ (x− xo) .

Since the motion is instantaneously rigid, ω does not depend on the variables
x of the generic point in the fluid. Taking the curl of both sides gives

curl v = (v3,x2
− v2,x3

) e1 + (v1,x3
− v3,x1

) e2 + (v1,x2
− v1,x2

) e3 = 2ω (5.1)

Therefore, curl v(x, t) gives, apart from the factor 2, the angular velocity of
the infinitesimal element of fluid about x, regarded as instantaneously rigid.
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For this reason curl v(·, t) is called vorticity field. If curl v(·, t) = 0 the field
is irrotational. If G is simply connected, an irrotational field is also potential,
that is there exists a function ϕ(·, t) ∈ C1(G), called kinetic potential, such
that v(·, t) = ∇ϕ(·, t). The flow is called potential, and the velocity field v(·, t)
is normal to the instantaneous equi-potential surfaces [ϕ(·, t) = const(t)]. If
the velocity field is stationary, the kinetic potential is independent of t and
the trajectories of the fluid particles are normal to the equi-potential surfaces.

Next expand v(·, t) in Taylor series about a point xo in the fluid, to obtain

v(x, t) = v (xo, t) + [∇v (xo, t)] · (x− xo) + o
(
|x− xo|2

)
.

Therefore, up to terms of higher order

vi(x, t) = vi (xo, t) + vi,xj (xj − xo,j) , i = 1, 2, 3.

For fixed indices i, j

vi,xj =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
+

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
= Dij +Rij . (5.2)

The entries Dij e Rij define two tensors D and R. The first is symmetric
and is called deformation tensor. The second is skew-symmetric and is called
rotation tensor. With this notation, the previous Taylor expansion takes the
approximate form

v(x, t) = v (xo, t) +D · (x− xo) +R · (x− xo) . (5.3)

Consider an infinitesimal arc d (x− xo) within the fluid and along its motion,

of length d` =

√
d (x− xo)2

. Then

d

dt
d`2 = 2d (x− xo) · d (ẋ− ẋo)

= d (xi − xo,i) vi,xjd (xj − xo,j)
= 2d (x− xo)t · D · d (x− xo) .

Therefore, D tracks the deformations of infinitesimal lengths along the motion.
In a rigid motion lengths are preserved and D = 0. If D = λI then the
deformation occurs uniformly along the coordinate axes and the fluid expands
if λ > 0 and contracts if λ < 0. From the definition of R

R · (x− xo) =
1

2
curl v ∧ (x− xo) = ω ∧ (x− xo) .

Hence, R gives the angular velocity of the system as if it were in instantaneous
rigid motion. These remarks and (5.3) suggest we regard the infinitesimal
motion of a fluid as the sum of
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1. an infinitesimal translation along v (xo, t);
2. an infinitesimal deformation along the coordinate axes;
3. an infinitesimal rigid rotation about the axis through xo and directed as

curl v (xo, t).

This is known as the Cauchy theorem.

6 Friction Tensor for Newtonian Viscous Fluids

In real fluids the friction generated by the mutual sliding of infinitesimal layers
generates shear forces that oppose the motion. The stress tensor T takes the
more general form

τij = −p δij + σij , (6.1)

where σij are due to friction. Two infinitesimal layers slide over one another
if their velocity is different. Therefore σij = σij(∇v) depend on the gradient
of the velocity. Moreover, σij = 0 if ∇v = 0. Assuming that σij(·) are smooth
functions of their arguments, they can be expanded in Taylor’s series about
the origin of their arguments to give

σij(∇v) = γijhkvh,xk + oij
(
‖∇v‖2

)
, where γijhk =

∂σij
∂vh,xk

∣∣∣∣
∇v=0

for i, j = 1, 2, 3, where oij(·) are infinitesimal of higher order in |∇v|. A
fluid is Newtonian if (σij) depends linearly on ∇v so that the higher order
terms in the previous Taylor expansions are negligible. Water and alcohol are
Newtonian, whereas paints and gels are not.

The numbers γijhk as the indices i, j, h, k run over 1, 2, 3, represent a 4th-
order tensor which quantifies the stresses due to the presence of internal fric-
tion in a fluid. By its physical nature such a tensor must be isotropic, that is
must be independent of rotations of the Cartesian system of its representation.

Lemma 6.1 Let (γijhk) for i, j, h, k = 1, 2, 3 be a representation of an
isotropic tensor σ. Then there exists numbers λ and µ1, µ2, such that

γijhk = λδijδhk + µ1δihδjk + µ2δikδjh.

The lemma is established in § 8.2 Assuming it for the moment, it implies that
σij must be of the form

σij = λδijvh,xh + µ1vi,xj + µ2vj,xi .

Since (σij) must also be symmetric (Proposition 3.1)

σij = λδijvh,xh + µ1vj,xi + µ2vi,xj .

2A more general Stress-Deformation relation is due to Serrin [39].
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Adding these two expressions of σij gives

σij =
1

2
λ div v δij +

1

2
µ̄
(
vi,xj + vj,xi

)
=

1

2
λ div v δij +

1

2
µ̄Dij ,

where µ̄ = µ1 + µ2 and (Dij) is the deformation tensor introduced in (5.2).
This representation of the friction stress tensor in Newtonian fluids is due to
Stokes ([48]). If the fluid is also incompressible

σij =
1

2
µ̄Dij . (6.2)

The constant 1
2 µ̄ is called the kinematic viscosity, and is determined experi-

mentally. By thermodynamics considerations µ̄ > 0 ([25] page 213, and [42],
Chapter V).

7 The Navier-Stokes Equations

A Newtonian, viscous, incompressible fluid moves in a domain G ⊂ R3. The
momentum equations for such a fluid are those in (3.1). Taking into account
the form of the acceleration ẍ, and the form (6.1)–(6.2) of the stress tensor
T, these equations take the form

[vt + (v · ∇)v − f ] ρ+∇p =
1

2
µ̄div (Dij) = µ̄∆v +∇ div v

Therefore, since the fluid is incompressible

vt − µ∆v + (v · ∇)v +
1

ρ
∇p = f

div v = 0
in G× R+, (7.1)

where µ = µ̄/ρ. We rename the constant µ as the kinematic viscosity and its
physical dimensions are length-squared over time.

7.1 Conservation and Dissipation of Energy

Assume that there are no external forces, so that f = 0. Multiply (7.1) by v
and perform standard vector calculus operations, to get

DtB =
pt
ρ

+ µ∆
1

2
|v|2 − µ

3∑
i=1

|∇vi|2 where B =
1

2
|v|2 +

p

ρ
. (7.2)

The term B is the specific energy of a material particle about x. Therefore,
the left-hand side of (7.2) is the material derivative of such a specific energy.
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The first term on the right-hand side is the time-variation of the internal
energy about x. The second term can be regarded as a dissipation of kinetic
energy due to viscosity. The last term is the energy dissipation due to the
rough mutual sliding of infinitesimal layers one over one another. Thus, the
variation of energy along Lagrangian paths is balanced by the time-variation
of the internal energy and the dissipation of energy due to viscosity.

7.2 Dimensionless Formulation, Reynolds Number and Similarities

The Navier-Stokes equations (7.1) are written in their physical dimensions. To
render them dimensionless select length and time units ` and τ and introduce
dimensionless variables and quantities 3

x′ =
x

`
, t′ =

t

τ
, v′ =

τ

`
v, p′ =

τ2

`2
p

ρ
, f ′ =

τ2

`
f .

Then (7.1) become

v′t′ −
1

R
∆′v′ + (v′ · ∇′) v′ +∇′p′ = f ′

div′ v′ = 0
in G′ × R′+ (7.3)

where

R =
1

µ

`2

τ
=
ρ

µ̄

`2

τ

Here ∆′,∇′ and div′ denote the analogous differential operations with respect
to the variables x′, and G′ is the dimensionless description of G. The number
R is called Reynolds number. From the dimensions of µ it follows that R is
dimensionless.

Two motions are similar if they take place in homothetic domains with the
same Reynolds number. Roughly speaking, the two domains have the same
geometry and are mutually rescaled by a given length scale. The length scale
being fixed then one rescales the time to obtain the same Reynolds number.
For example, in building a vessel one is interested in investigating apriori how
3 the shape of the hollow impacts on the motion of the surrounding fluid. One
builds a model vessel, to be used in a limited laboratory environment, of the
same shape but of reduced size, by rescaling the geometry by a fixed length.
Experiments are performed with such a model in the same fluid where the
vessel is intended to operate, so that the two fluids have the same viscosity.
Finally having fixed the length scale one introduces a new time scale so that
the Reynolds number remains the same. The two motions are then similar,
and experimental laboratory operations correspond to those of the real fluid
up to inverse length and time scales.

3Recall that f is a specific force, that is, force per unit mass.
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These remarks imply that the mathematical investigation of motions mod-
eled by the Navier-Strokes equations reduces to investigate (7.3) with R = 1,
since space and time scales can always be chosen so that R = 1. Denoting
again by v,p, and f the indicated dimensionless quantities, and by ∆,∇, div
the homologous operations with respect to the indicated, rescaled, dimension-
less variables, the mathematical problem consists in finding a velocity field v
defined in G× R+, such that

vt −∆v + (v · ∇)v +∇p = f

div v = 0
in G× R+,

v(·, 0) = vo in G for t = 0.

(7.4)

Here vo is the initial velocity field defined in G and assumed to be known.
The determination of v hinges upon further information on its behavior on
the boundary of G. For example, since the fluid is viscous it adheres to the
boundary of its container G, so that v = 0 on ∂G. This is a Dirichlet datum
of v on ∂G. On the other hand, the container might be impermeable so that
no fluid outflows it at ∂G, that is v · n = 0 on ∂G for all times. This is
a Neumann datum of v on ∂G. These boundary information need not be
homogeneous or could be intertwined, so that for example a Dirichlet datum
is given on a portion ∂1G of ∂G and a Neumann datum is prescribed on the
remaining portion ∂2G = ∂G−∂1G. Another kind of boundary condition will
be given in the introductory section of the next chapter. While the physical
formulation is simple, the corresponding mathematical problems are still not
well understood and are the object of current investigations, and will be dealt
with in the next Chapter.

8 Friction Tensor for Newtonian Viscous Fluids

8.1 Isotropic Tensors of the Fourth Order

Given a continuously differentiable velocity field v defined in R3, consider the
expression

Tij = γijhkvhk, where vhk =
∂vh
∂xk

, i, j, h, k = 1, 2, 3. (8.1)

The nine numbers Tij are the representative entries of a tensor T of order 2,
with respect to a Cartesian triad Σ. Similarly (γijhk) is the Σ-representative
of a 4th-order tensor Γ . Let now Σ′ be a new Cartesian triad obtained from
Σ by a rotation, realized by a unitary matrix A : Σ → Σ′. The vector field
x→ v(x) is transformed into

Σ′ 3 y −→ v′(y) = Av
(
A−1y

)
(8.2)

and the representation of T in Σ′ is



8 Friction Tensor for Newtonian Viscous Fluids 13

T ′`m = γ`mrsv
′
rs, where v′rs =

∂v′r
∂ξs

, `,m, r, s = 1, 2, 3.

Using (8.2) compute

v′rs = ArhAsk
∂vh
∂xk

= ArhAskvhk.

Therefore,
T ′`m = ArhAskγ`mrsvhk

The tensor T is isotropic if its action on vectors is independent of the reference
Cartesian triad, that is, if for all w ∈ Σ

(Tij) w = A−1
(
T ′ij
)
Aw, ∀w ∈ Σ.

Since w ∈ Σ is arbitrary

Tij = A`iT
′
`mAmj , i, j = 1, 2, 3.

Using these representations, it follows that T is isotropic if

γijhkvhk = A`iAmjArhAskγ`mrsvhk, i, j = 1, 2, 3

for all unitary matrices A. This in turn implies

γijhk = A`iAmjArhAskγ`mrs, i, j, h, k = 1, 2, 3. (8.3)

This is the condition for a 4th-order tensor Γ to be isotropic.

Proposition 8.1 Let Γ be a 4th-order isotropic tensor. Then its representa-
tion with respect to a Cartesian triad Σ is

γijhk = λδijδhk + µ1δihδjk + µ2δikδjh, (8.4)

where the constants λ, µ1 and µ2 are independent of Σ.

Proof. In (8.3) take the rotation matrix

A =

−1 0 0
0 −1 0
0 0 1

 .

For such a choice, the entries in (8.3) are non-zero only if the quadruple ijhk
coincides with `mrs, and in such a case

γijhk = AiiAjjAhhAkkγijhk.

From the structure of the matrix A above, one verifies that if in the quadru-
ple ijhk, the index 3 occurs an odd number of times, then γijhk = −γijhk.
Therefore,
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γijhk = 0
if in the quadruple ijhk the index 3
occurs an odd number of times.

Repeating the same arguments, for the choices of rotation matrices

A =

−1 0 0
0 1 0
0 0 −1

 , A =

 1 0 0
0 −1 0
0 0 −1


one concludes that

γijhk = 0
if in the quadruple ijhk anyone of the indices
1, 2, 3 occurs an odd number of times.

Therefore, the only non-zero elements are of the form

γiihh, γihih, γihhi,

where repeated indices are not meant to be added. From (8.3) compute

γ1133 = A`1Am1Ar3As3γ`mrs = δ`mδrsγ`mrs,

γ2233 = A`2Am2Ar3As3γ`mrs = δ`mδrsγ`mrs.

Therefore, γ1133 = γ2233 and by symmetry

γ1122 = γ1133 = γ2233 = γ3311 = γ2211 = λ.

If on the other hand all indices are equal, (8.3) gives the identity

γiiii = A`iAmiAriAsiγ`mrs = δ`mrsγ`mrs = γ````, i, ` = 1, 2, 3.

Analogous considerations for the remaining terms imply that there exist con-
stants λ, µ1, µ2, θ such that

γiihh = λ, γihih = µ1, γihhi = µ2︸ ︷︷ ︸
i6=h

, γiiii = θ, for all i, h = 1, 2, 3.

Putting this in (8.3) gives

γijhk =
∑

indices of the form
iihh, i 6=h

A`iAmjArhAskγ`mrs

+
∑

indices of the form
ihih, i 6=h

A`iAmjArhAskγ`mrs

+
∑

indices of the form
ihhi, i 6=h

A`iAmjArhAskγ`mrs
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+
∑

indices of the form
iiii

A`iAmjArhAskγ`mrs

= λδijδhk + µ1δihδjk + µ2δikδjh︸ ︷︷ ︸
i6=h

+θδijδik

= λδijδhk + µ1δihδjk + µ2δikδjh + [θ − (λ+ µ1 + µ2)] δijhk.

To conclude the proof it will be shown that this form of the tensor (γijhk)
satisfies (8.3) for all unitary matrix A if and only if θ = λ+ µ1 + µ2. Indeed,
from (8.3)

λδijδhk + µ1δihδjk + µ2δikδjh + [θ − (λ+ µ1 + µ2)] δijhk

=A`iAmjArhAsk {λδ`mδrs + µ1δ`rδms + µ2δ`sδmr

+ [θ − (λ+ µ1 + µ2)] δijhk}
=λδijδhk + µ1δihδjk + µ2δikδjh +A`iAmjArhAsk [θ − (λ+ µ1 + µ2)] δ`mrs

Therefore, the tensor on the left-hand side satisfies (8.3) for all unitary ma-
trices A if

[θ − (λ+ µ1 + µ2)] (δijhk −A`iAmjArhAskδ`mrs) = 0

for all unitary matrices A. This is possible only if the coefficient independent
of the indices is zero.





2

ANALYSIS OF THE NAVIER-STOKES
EQUATIONS

1 Navier-Stokes Equations in Dimensionless Form

Let E be a physical open set in R3 filled with a fluid of dynamic viscosity µ
and constant density ρ, whose infinitesimal ideal particles at x ∈ E at time t
move with velocity v = (v1, v2, v3) function of (x, t), and are acted upon by
the pressure (x, t) → p(x, t), and by possible external force densities fe(x, t),
per unit volume. Enforcing the local, pointwise conservation of momentum
along each of the ideal Lagrangian paths t → x(t), yields the Navier-Stokes
system,

ρ
[
vt + (v · ∇)v

]
− µ∆xv +∇p = fe

divx v = 0
in E × (0,∞). (1.1)

Here ∆x, ∇ and divx denote the corresponding differential operation with
respect to the physical space variables x. If fe is conservative, such as for
example gravity, then fe = ∇F for some given potential F . In such a case
(1.1) can be written in homogeneous form by redefining p as (p− F ).

The various terms in (1.1) are written in terms of pre-chosen physical unit
length [L] and time [T ] and corresponding unit velocity [V ] = [L][T ]−1, unit
pressure [P ] = ρ[V ]2, unit force density [F ] = ρ[V ][T ]−1 and unit dynamic
viscosity [µ] = ρ[V ][L]. They can be written in dimensionless form by intro-
ducing dimensionless space variables y = x[L]−1 and time τ = t[T ]−1 and
corresponding dimensionless velocities, pressures and force densities

ṽ(y, τ) =
v(y[L], τ [T ])

[V ]
, p̃(y, τ) =

p(y[L], τ [T ])

[P ]
, f̃ =

fe(y[L], τ [T ])

[F ]
.

Denote by Ẽ the rescaled physical domain E expressed in terms of dimension-
less coordinates. Then, dividing (1.1) by ρ and formally by [V ][T ]−1, yields

ṽτ −
1

Re
∆yṽ + (ṽ · ∇y)ṽ +∇yp̃ = f̃

divy ṽ = 0
in Ẽ (1.2)
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where Re is the Reynolds number1 of the system corresponding to the units
[L] and [T ] and defined by

Re def
=

ρ[V ][L]

µ
.

WhileRe is dimensionless, its numerical value depends on the choice of [L] and
[T ]. Indeed the dynamic viscosity µ for a fluid of density ρ, is experimentally
determined in terms of some given units, say for example cm2sec−1. Expressing
them in terms of new units [L] and [T ], changes the numerical value of Re.
The coefficient of ∆y in (1.2) is the dimensionless kinematic viscosity ν of the
rescaled fluid.

This rescaling procedure is at the basis of predicting experimentally non
accessible fluid flows in large scale domains, such as air past an airfoil or water
past a vessel. The physical domains are rescaled to experimentally accessible
dimensions, such as laboratory water channels or wind tunnels, with properly
redefined Reynolds number. Information provided by the dimensionless system
(1.2) is then rescaled back to the physical domain.

To simplify the symbolism we continue to denote by x, t, v, p and f the
rescaled, dimensionless quantities and rewrite the Navier-Stokes system (1.1)
in the dimensionless domain E, for dimensionless times t > 0 in the form

vt − ν∆v + (v · ∇)v +∇p = f

div v = 0
in E × (0,∞), (1.3)

with ν = Re−1. Typically one prescribes the velocity field vo = v(·, 0) at time
t = 0 and v(·, t) = g(·, t) on ∂E for t > 0 and seeks to solve (1.3) subject to
these data.

If E is a rigid container at rest with respect to an inertial system, then ∂E
acts as a rigid wall and g = 0, by viscosity. This is the so-called no-slip condi-
tion. The case g 6= 0 may occur when ∂E is itself in motion with respect to an
inertial system. In the applications, other types of boundary conditions have
been considered. We talk of kinematic condition, when the normal component
of the velocity vanishes at the boundary, that is, the velocity v is tangent to
the boundary:

v(·, t) · n = 0 on ∂E

for t > 0, where n is the outward unit normal to the boundary ∂E. In
1823 Navier proposed a more general condition, namely the so-called Navier
boundary condition, which, roughly speaking, states that the tangential com-
ponent of the velocity is proportional to the tangential stress at the boundary.
We will not consider these different boundary conditions in the following.

The system (1.3) is formal since, even by prescribing smooth initial and
boundary data vo and g and forcing term f , one cannot apriori guarantee that
v and p are so regular as to give pointwise meaning to its various terms.

1Osborne Reynolds, 1842–1912, Irish-born physicist, gave important contribu-
tions to the understanding of fluid Dynamics.
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2 Steady State Flow with Homogeneous Boundary Data

Let E be a bounded domain in R3 with boundary ∂E, and consider, formally,
the steady-state flow in E,

−ν∆v + (v · ∇)v +∇p = f ,

div v = 0,

v
∣∣
∂E

= 0

in E. (2.1)

Introduce the space of functions

V =
{
ϕ ∈ C∞o (E;R3) such that divϕ = 0 in E

}
;

H =
{

closure of V in the norm of L2(E;R3)
}

;

V =
{

closure of V in the norm of W 1,2
o (E;R3)

}
.

(2.2)

Formally inner-multiply the first of (2.1) by ϕ ∈ V and integrate by parts in
E. Since v and ϕ are both divergence free, obtain formally∫

E

[
ν∇v : ∇ϕ− v · (v · ∇)ϕ− f ·ϕ

]
dx = 0 (2.3)

where
∇v : ∇ϕ =

∑3
j=1∇vj · ∇ϕj .

Here we have used the relation∫
E

ψ · (ζ · ∇)ϕdx = −
∫
E

ϕ · (ζ · ∇)ψdx

valid for any triple of solenoidal vectors ϕ,ψ, ζ ∈ W 1,2(E;R3) such that at
least one of them is in V . As a consequence∫

E

ϕ · (ζ · ∇)ϕdx = 0.

These calculus operations will be repeatedly used without specific mention.
By the Sobolev embedding Theorem applied with N = 3 and p = 2, there

exists a constant γ independent of E and v, such that

‖v‖6 ≤ γ‖∇v‖2 for all v ∈ V. (2.4)

Therefore, for all such v

‖v‖2 ≤ γ|E|
1
3 ‖∇v‖2 and ‖v‖4 ≤ γ|E|

1
12 ‖∇v‖2. (2.5)

As a consequence

γo‖v‖V ≤ ‖∇v‖2 ≤ ‖v‖V where γo =
1

γ|E| 13 + 1
(2.6)
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for all v ∈ V , where the rigorous definition of norm in V is given in (3.1)
below. By these inequalities, all terms in (2.3) are well defined for all ϕ ∈ V
and f ∈ L

6
5 (E;R3). Thus, having prescribed one such f , we define a weak

solution of (2.1) as a function v ∈ V satisfying (2.3) for all ϕ ∈ V . The
homogeneous boundary data on ∂E are taken in the sense of the membership
v ∈ V . The same membership guarantees that div v = 0 in the weak form∫

E

v · ∇ϕdx = 0 for all ϕ ∈ C∞(E).

By this definition of solution, the choice ϕ = v is admissible in (2.3) yielding
the basic energy estimate

ν‖∇v‖2 ≤ γ‖f‖ 6
5
, (2.7)

to be satisfied by any weak solution to (2.1), where γ is the constant of the
embedding of V into L6(E;R3). Thus if f = 0 then v = 0 is the only weak
solution of (2.1).

2.1 Uniqueness of Solutions to (2.1)

Let v1 and v2 be weak solutions to (2.1) corresponding to the choice of f ∈
L

6
5 (E;R3). Write (2.3) for v1 and v2, subtract the expression so obtained and

in the resulting integral identity choose ϕ = w
def
= (v1 − v2), to obtain

ν‖∇w‖22 =

∫
E

[
v1 · (w · ∇)w + w · (v2 · ∇)w

]
dx

≤
(
‖v1‖4 + ‖v2‖4

)
‖w‖4‖∇w‖2.

Since vj are solutions, combining (2.5) and (2.7) gives

‖w‖4 ≤ γ|E|
1
12 ‖∇w‖2 and ‖vj‖4 ≤

γ2

ν
|E| 13 ‖f‖ 6

5
.

Therefore,

‖∇w‖2 ≤ 2γ
(γ
ν

)2

|E| 5
12 ‖f‖ 6

5
‖∇w‖2.

If the coefficient on the right-hand side is less than 1, then w = 0 and the
solution is unique. Such a coefficient depends on the absolute constant γ of the
embedding V ⊂ L6(E;R3), on the size of E, the viscosity ν, and the nature of
the forcing term f . Given E and f uniqueness holds if the Reynolds number
of the system is sufficiently small or equivalently if the fluid is sufficiently
viscous.

It should be noted that the definition of weak solution does not depend
on the pressure p, which itself is an unknown to be found from (2.1).
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3 Existence of Solutions to (2.1)

The spaces H and V introduced in (2.2) are separable Hilbert spaces by the
inner products

H 3 (u,v)→ 〈u,v〉H
def
=

∫
E

u · vdx

V 3 (u,v)→
(
u,v

)
V

def
= 〈u,v〉H +

∫
E

∇u : ∇vdx.

(3.1)

By (2.6) the inner product (·, ·)V is equivalent to

V 3 (u,v)→ 〈u,v〉V =

∫
E

∇u : ∇vdx =
∑3
j=1〈∇uj ,∇vj〉H ,

which from now on we adopt. Having fixed f ∈ L 6
5 (E;R3) and v ∈ V , return

to (2.3) and consider the two linear maps

V 3 ϕ→ def
=

∫
E

f ·ϕdx

V 3 ϕ→ def
=

∫
E

v · (v · ∇)ϕdx.

By Hölder’s inequality and the embedding V ⊂ L6(E;R3)∣∣∣ ∫
E

f ·ϕdx
∣∣∣ ≤ γ‖f‖ 6

5
‖∇ϕ‖2.

Therefore, the first is a bounded linear functional on V . By the Riesz repre-
sentation theorem, there exists a unique F ∈ V such that2

V 3 ϕ→
∫
E

f ·ϕdx = 〈F,ϕ〉V .

Likewise, by the same embedding and (2.5)∣∣∣ ∫
E

v · (v · ∇)ϕdx
∣∣∣ ≤ γ2|E| 16 ‖∇v‖22‖∇ϕ‖2.

Therefore, also the second map, for every fixed v ∈ V , is a bounded linear
functional in V . By the Riesz representation theorem, there exists a unique
B(v) ∈ V such that

V 3 ϕ→
∫
E

v · (v · ∇)ϕdx = 〈B(v),ϕ〉V .

With these identifications, the weak formulation (2.3) can be recast in the
form

2[7], Chap. IV, § 4
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V 3 ϕ→ ν〈v,ϕ〉V = 〈B(v) + F,ϕ〉V .
Equivalently, in functional form

v = B(v) in V ∗ where B(v) =
1

ν

(
B(v) + F

)
, (3.2)

and V ∗ denotes the dual of V identified with V itself up to an isometric
isomorphism. Thus, existence of weak solution to (2.1) in the sense of (2.3) is
equivalent to finding a fixed point of the map V 3 v→ B(v) ∈ V ∗.
Lemma 3.1 The map B(·) : V → V ∗ is compact.

Proof. Since V and V ∗ are separable metric spaces, compactness is equivalent
to sequential compactness. Let K be a bounded subset of V , i.e., there exists a
constant C such that ‖v‖V ≤ C for all v ∈ K. The image B(K) is pre-compact
in V ∗ if for every sequence {vn} ⊂ K there exists a subsequence {vn′} ⊂ {vn}
such that {B(vn′)} is a Cauchy sequence in the operator topology of V ∗. By
the Rellich–Kondrachov compact embedding theorem, the embedding V ⊃
K ↪→ Lp(E;R3) is compact for all 1 ≤ p < 6. Therefore, having fixed 1 ≤ p <
6, from every sequence {vn} ⊂ K one can extract a subsequence {vn′} ⊂ {vn}
which is Cauchy in the topology of Lp(E;R3). Hence, to show B(K) is pre-
compact in V ∗ it suffices to show that for every sequence {vn} ⊂ K, Cauchy
in L4(E;R3) the corresponding sequence {B(vn)} is Cauchy in the operator
topology of V ∗. Having fixed one such sequence {vn} ⊂ K, the action of
ν[B(vn)− B(vm)] on elements ϕ ∈ V , is computed from

〈ν[B(vn)− B(vm)],ϕ〉V =

∫
E

[vn · (vn · ∇)− vm · (vm · ∇)]ϕdx

=

∫
E

(vn − vm) · (vn · ∇)ϕdx

+

∫
E

vm · ((vn − vm) · ∇)ϕdx

≤
(
‖vn‖4 + ‖vm‖4

)
‖vn − vm‖4‖ϕ‖V

≤ γ|E| 1
12

(
‖vn‖V + ‖vm‖V

)
‖vn − vm‖4‖ϕ‖V .

Hence

‖B(vn)− B(vm)‖V ∗ = sup
‖ϕ‖V =1

〈[B(vn)− B(vm)],ϕ〉V

≤ 2Cγ|E| 1
12 ‖vn − vm‖4.

Consider next the family of variants of (3.2)

v = λB(v) in V for λ ∈ (0, 1). (3.3)

If vλ is a solution of (3.3), it is also a solution of (2.3) with ν replaced by ν/λ.
As such, the apriori estimates (2.6) and (2.7) remain in force with v replaced
by vλ and ν replaced by ν/λ, i.e.,
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‖vλ‖V ≤
1

γo
‖∇vλ‖2 ≤

λ

ν

γ

γo
‖f‖ 6

5
.

Therefore, all possible solutions of (3.3) are uniformly bounded in λ. Existence
of solutions of (3.2), and hence of (2.1), now follows from the Schauder–Leray
Fixed Point Theorem.

Theorem 3.1 (Schauder–Leray [28]). Let T be a continuous, compact
mapping from a Banach space {X; ‖ · ‖X} into itself, such that all possible
solutions of x = λT (x) are equi-bounded uniformly in λ ∈ (0, 1). Then T has
a fixed point.

4 Non-Homogeneous Boundary Data

Let E be a simply connected, bounded domain in R3 with boundary ∂E
of class C1 and satisfying the segment property and consider, formally, the
steady-state flow in E,

−ν∆v + (v · ∇)v +∇p = f ,

div v = 0,

v
∣∣
∂E

= a

in E (4.1)

where a is a vector valued function defined on ∂E, whose regularity will be
specified as we proceed. If v is a solution of (4.1) then, formally, by Green’s
theorem,

0 =

∫
E

div vdx =

∫
∂E

a · n dσ, (4.2)

where n is the outward unit normal to ∂E. This is then a necessary condition
to be imposed on a for the solvability of (4.1). Solvability of (4.1) hinges on
extending a with a divergence free vector valued function b defined in E. The
smoothness of b and the meaning of b = a on ∂E will be made precise as we
proceed. Assuming that such an extension can be found, seek a solution to
(4.1) in the form v = b + u, where formally

−ν∆u + (u · ∇)u + (b · ∇)u + (u · ∇)b +∇p = g,

div u = 0,

u
∣∣
∂E

= 0

in E, (4.3)

and
g = f + ν∆b− (b · ∇)b. (4.4)

Solutions of (4.3) are sought in V with the equation being interpreted in its
weak form
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ν

∫
E

∇u : ∇ϕdx

=

∫
E

{[u · (u · ∇) + u · (b · ∇) + b · (u · ∇)]ϕ+ g ·ϕ} dx
(4.5)

for all ϕ ∈ V . Taking ϕ = u gives the apriori estimate(
ν − γ|E| 1

12 ‖b‖4
)
‖∇u‖22 ≤

∣∣∣∣∫
E

g · u dx
∣∣∣∣ , (4.6)

where γ is the constant of the embedding of V into L6(E;R3). The right-hand

is finite if f ∈ L 6
5 (E;R3) and b ∈W 1,2(E;R3), since by the Sobolev-Nikol’skii

embedding theorem, this implies b ∈ L6(E;R3). Indeed,∣∣∣∣∫
E

g · u dx
∣∣∣∣ ≤ [γ‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
‖∇u‖2, (4.7)

where again γ is the constant of the embedding of V into L6(E;R3).
If the domain E has boundary ∂E of class C1 and satisfies in addition

the segment property, functions b ∈ W 1,2(E;R3) have traces on ∂E in the
fractional Sobolev space

b
∣∣
∂E

= a ∈W 1
2 ,2(∂E;R3). (4.8)

Henceforth given a boundary datum a ∈ W
1
2 ,2(∂E;R3), we assume it can

be extended into a solenoidal vector field b ∈ W 1,2(E;R3). A compatibility
condition for such an extension to exist is that a has zero flux across ∂E as
indicated by (4.2). We also assume that such an extension can be constructed
to satisfy

γ|E| 1
12 ‖b‖4 ≤ 1

2ν. (4.9)

The actual construction of an extension b satisfying (4.8) is carried out in Sec-
tion 4.2c of the Complements. Moreover, we assume that (4.9) can be derived
from (4.7c). Accepting it for the moment, this last requirement combined with
(4.6)–(4.7) yields the apriori estimate

‖∇u‖2 ≤
2γ

ν

[
‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
(4.10)

to be satisfied by any weak solution to (4.1).

4.1 Uniqueness of Solutions to (4.1)

If u1 and u2 in V solve (4.1) write their weak formulations (4.5), subtract
them out and in the integral identity so obtained take the testing function

ϕ = (u1 − u2)
def
= w, and make use of the embedding (2.5) and the upper

bound (4.10) to be satisfied by all weak solutions to (4.1), to obtain
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‖∇w‖22 =
1

ν

∫
E

[
u1 · (w · ∇)w + w · (u2 · ∇)w + b · (w · ∇)w

]
dx

≤ 1

ν

(
‖u1‖4 + ‖u2‖4 + ‖b‖4

)
‖w‖4‖∇w‖2

≤ γ

ν
|E| 1

12

(
4
γ2

ν
|E| 1

12

[
‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
+ ‖b‖4

)
‖∇w‖22.

If the coefficient of ‖∇w‖22 on the right-hand side does not exceed 1 then
w = 0 and the problem admits at most one solution. The uniqueness condition
hinges on several factors including |E| and the size of the extension b through
the norms ‖∇b‖2 and ‖b‖4. The key condition however is expressed by the
smallness of the Reynolds number Re = ν−1. Thus uniqueness holds if the
Reynolds number is sufficiently small or equivalently if the fluid is sufficiently
viscous.

4.2 Existence of Solutions to (4.1)

Consider the linear maps

V 3 ϕ→ def
=

∫
E

g ·ϕ dx

V 3 ϕ→ def
=

∫
E

[
u · (u · ∇) + u · (b · ∇) + b · (u · ∇)

]
ϕ dx.

Estimate ∣∣∣ ∫
E

g ·ϕ dx
∣∣∣ ≤ γ [‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
‖∇ϕ‖2.

Therefore, the first is a bounded linear functional in V . By the Riesz repre-
sentation theorem there exists a unique G ∈ V such that

V 3 ϕ→
∫
E

g ·ϕ dx = 〈G,ϕ〉V .

Likewise, estimate∣∣∣ ∫
E

[
u · (u · ∇) + u · (b · ∇) + b · (u · ∇)

]
ϕ dx

∣∣∣
≤ γ|E| 1

12

(
γ|E| 1

12 ‖∇u‖2 + 2‖b‖4
)
‖∇u‖2‖∇ϕ‖2,

where γ is the constant of the embedding L
6
5 (E;R3) ⊂ V . Therefore, also the

second map is a bounded linear functional in V . By the Riesz representation
theorem3 there exists B̄(u) ∈ V , such that

3[7], Chap. IV, § 4
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E

[
u · (u · ∇) + u · (b · ∇) + b · (u · ∇)

]
ϕ dx = 〈B̄(u),ϕ〉V .

With these identifications the weak form (4.5) reads

V 3 ϕ→ ν〈u,ϕ〉V = 〈B̄(u) + G,ϕ〉V .

Equivalently, in functional form

u = B̄(u) in V ∗ where B̄(u) =
1

ν

(
B̄(u) + G

)
(4.11)

where, as before, V ∗ denotes the dual of V identified with V itself up to an
isometric isomorphism. Thus, existence of weak solution to (4.1) in the sense
of (4.5) is equivalent to finding a fixed point of the map V 3 u→ B̄(u) ∈ V ∗.
Lemma 4.1 The map B̄(·) : V → V ∗ is compact.

The proof is analogous to that of Lemma 3.1 with minor changes. Consider
next the family of variants of (4.11)

u = λB(u) in V for λ ∈ (0, 1). (4.12)

If uλ is a solution of (4.12), it is also a solution of (4.5) with ν replaced by
ν/λ. As such, the apriori estimate (4.10) remains in force with u replaced by
uλ and ν replaced by ν/λ, i.e.,

‖uλ‖V ≤
1

γo
‖∇uλ‖2 ≤ 2

λ

ν

γ

γo

[
‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
.

Therefore, all possible solutions of (4.12) are uniformly bounded in λ. Exis-
tence of solutions of (4.11), and hence of (4.1), now follows from the Schauder–
Leray Fixed Point Theorem 3.1.

5 Recovering the Pressure

Return to the steady-state Navier-Stokes system (2.1) in its weak form (2.3).
Existence of solutions to such a system has been established in Section 3
irrespective of the pressure p appearing in the formal pointwise form (2.1).
Assume momentarily that

v ∈W 2,2(E;R3) and f ∈ L2(E;R3). (5.1)

Then (2.3) by back-integration by parts yields∫
E

(NS) ·ϕdx = 0 where (NS) = −ν∆v + (v · ∇)v − f

for all ϕ ∈ V. Since (NS) ∈ L2(E;R3) this continues to hold for all ϕ ∈ H.
Therefore, (NS) ∈ H⊥. Introduce the space of functions

G =

{
collection of ϕ ∈ L2(E;R3) of the form

ϕ = ∇p for some p ∈W 1,2(E)

}
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Proposition 5.1 (Helmholtz-Weyl Decomposition [54]) Let E ⊂ R3

be open, bounded and convex. Then G = H⊥ or equivalently

L2(E;R3) = H ⊕G.

Indeed, Proposition 5.1 is a special case of the Helmholtz-Weyl decomposition;
its proof will be given in Section 5c of the Complements.

The system (2.1), as such, does not provide sufficient information to de-
termine the pressure p. However, its weak formulation (2.3) permits one to
assert that the principal part (NS) of the Navier-Stokes system has, at least
under the regularity assumptions (5.1) on v and f , and locally in E, the
form of a gradient of some pressure p ∈ W 1,2

loc (E). This follows by applying
Proposition 5.1 to open, convex subsets of E.

6 Steady State Flows in Unbounded Domains

Let E be an unbounded, open set in R3 filled with a fluid of dynamic viscosity
µ. The problem is particularly interesting from the physical point of view if
E is an exterior domain, that is, the complement of a bounded set; such a
situation can then be used to model the motion of a rigid body through a
viscous fluid, or the flow past an obstacle (see also [15, Chapter 1, § 2] for
more details).

The domain E will be assumed to be open and simply connected, with
boundary ∂E of class C1, and satisfying the segment property. The fluid
velocity v is assumed to take the value a on ∂E, for a vector field a whose
regularity will be specified as we proceed, and to approach a constant vector
a∞ as |x| → ∞. The fluid is stirred in its interior by a forcing term f whose
properties are to be defined. Consider formally the steady state flow in E,

−ν∆v + (v · ∇)v +∇p = f ,

div v = 0,

v
∣∣
∂E

= a,

lim
|x|→∞

v(x) = a∞.

in E (6.1)

Notice that, in general, (4.2) is no longer a necessary condition on a for the
solvability of (6.1), even if a∞ = 0.

6.1 Assumptions on a and f

It is assumed that the boundary datum a ∈ W 1
2 ,2(∂E;R3) can be extended

into a solenoidal b ∈W 1,2
loc (E;R3), satisfying
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b = a on ∂E as traces of functions in W 1,2(E;R3),

b− a∞ ∈ L2(E;R3),

|b(x)− a∞| ≤
Mo√

1 + |x|2
, and |∇b| ≤ M1

1 + |x|2
in E,

(6.2)

for two given constants Mo and M1. For exterior domains and smooth a with
zero flux on ∂E, such an extension can always be realized. Indeed we have the
following.

Proposition 6.1 Let E be an exterior domain, complement of a bounded,
simply connected domain Ec = R3\Ē. Then any a ∈ C2(∂E;R3) satisfying
(4.2) admits a solenoidal extension b ∈ C2(R3;R3) satisfying (6.2).

Proof. For δ > 0, consider the set Eδ = [dist(·, ∂E) < δ] and construct the
vector field ψa ∈ C3(R3;R3) corresponding to a, compactly supported in Eδ,
such that the solenoidal extension ba of a is realized by ba = curlψ. Such a
construction is guaranteed by Proposition 4.3c of the Complements.

Let R > 1 be sufficiently large, such that BR−1 ⊃ Ec, and set

b′ = curl
[(
x3a∞,2, x1a∞,3, x2a∞,1

)
ζ
]
, (6.3)

where

ζ =


1 outside a ball of radius R,

0 inside a ball of radius R− 1,

smooth, 0 ≤ ζ ≤ 1 otherwise.

Finally, let b(x) = ba(x) + b′(x). One verifies that such a b is solenoidal, and
satisfies the requirements (6.2).

For general vector fields with the regularity assumed in (6.2), again one
relies on Proposition 4.3c of the Complements for the construction of ba,
whereas b′ is built as in (6.3).

By the previous construction, it is also apparent that supp∇b is a compact
set in R3.

The forcing term f is taken in L2
loc(E;R3) and decreasing sufficiently fast

as |x| → ∞, in the sense
|x| f ∈ L2(E;R3). (6.4)

6.2 Towards a Notion of Solution to (6.1)

Proceeding as in the case of bounded domains, solutions are sought of the
form v = b + u, for some u ∈ V , where formally u satisfies (4.3)-(4.5), the
latter holding for all ϕ ∈ V. The membership u ∈ V provides weak forms of
the last two conditions in (6.1), whereas (4.5) interprets weakly the Navier-
Stokes system. The next step is in deriving apriori estimates for u, by taking
ϕ = u in (4.5).
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For bounded domains E, the inner product (·, ·)V introduced in (3.1) is
equivalent to the inner product 〈∇·,∇·〉H . This follows from the embedding
inequalities (2.5)-(2.6). If E is unbounded this is, in general, no longer the case
and the topology generated by (·, ·)V cannot be related to the norm ‖∇ · ‖2.
Nevertheless the first of (2.5) has a weaker counterpart in V .

Proposition 6.2 Let u ∈ V and 0 ∈ R3\ supp u. Then∫
E

|u|2

|x|2
dx ≤ 4

∫
E

|∇u|2dx (6.5)

Proof. Since u has vanishing trace on ∂E, by extending it with zero outside
E, regard u as an element of V in R3. Assume momentarily that u ∈ V, and
for ε ∈ (0, 1) compute and estimate∫

ε<|x|<ε−1

|u|2

|x|2
dx =

∫
ε<|x|<ε−1

(∆ ln |x|)|u|2dx

=

∫
|x|=ε−1

∇ ln |x| · x
|x|
|u|2dσ −

∫
|x|=ε

∇ ln |x| · x
|x|
|u|2dσ

− 2

∫
ε<|x|<ε−1

u

|x|
·
(
x · ∇u

|x|

)
dx.

Letting ε→ 0 gives∫
E

|u|2

|x|2
dx ≤ 2

∫
E

|u|
|x|
|∇u|dx ≤

(
4

∫
E

|u|2

|x|2
dx
) 1

2
(∫

E

|∇u|2dx
) 1

2

.

which yields (6.5). The proof is then concluded by density.

Notice that in the proof it is not used that u is solenoidal.

7 Existence of Solutions to (6.1)

7.1 Approximating Solutions and Apriori Estimates

For n > diam(Ec) let Bn be the ball of radius n about the origin of R3, set
En = E ∩Bn, and let Vn and Vn be the spaces introduced in (2.2) for En.

In each En we consider the problem

−ν∆vn + (vn · ∇)vn +∇p = f ,

div vn = 0,

vn
∣∣
∂E

= a,

vn
∣∣
∂Bn

= b
∣∣
∂Bn

.

Let vn = b + un, where un ∈ Vn is a weak solution in En of
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−ν∆un + (un · ∇)un + (b · ∇)un + (un · ∇)b +∇p = g,

div un = 0,

un
∣∣
∂E

= 0,

un
∣∣
∂Bn

= 0,

(7.1)

where g = f + ν∆b− (b · ∇)b. Since En is bounded, such a un exists, by the
construction in Section 4.

Proposition 7.1 Let un ∈ Vn be a solution of (7.1) in En, with b and f
satisfying (6.2) and (6.4) respectively. Then either of these apriori estimates
holds, uniformly in n(

ν − 2Mo

)
‖∇un‖2(

ν − 4M1

)
‖∇un‖2

≤ γg
def
= ‖|x|f‖2 + π(CπM2

1 + νM1), (7.2)

where C > 0 is a constant that depends on δ and R, introduced in the proof
of Proposition 6.1.

Proof. Since un ∈ Vn, it can be regarded as un ∈ V , by extending it to
be zero outside En. Likewise, the test function ϕ ∈ Vn is regarded as in V .
Insert ϕ = u in the weak formulation of (7.1), and transform and estimate
the various terms by using the assumptions (6.4) on f and (6.2) on b. In this
process we use the elementary calculation∫

R3

dx

(1 + |x|2)2
= π2.

We have

ν

∫
En

∇un : ∇un dx ≤
∣∣∣ ∫
En

un · (b · ∇)un dx
∣∣∣

+
∣∣∣ ∫
En

un · (un · ∇)b dx
∣∣∣

+
∣∣∣ ∫
En

f · un dx
∣∣∣

+
∣∣∣ν ∫

En

∆b · un dx
∣∣∣

+
∣∣∣ ∫
En

(b · ∇)b · un dx
∣∣∣.

The various terms above are transformed and estimated as follows:
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En

f · un dx
∣∣∣ ≤ ‖|x|f‖2‖|x|−1un‖2 ≤ 2‖|x|f‖2‖∇un‖2;∣∣∣ ∫

En

ν∆b · un dx
∣∣∣ ≤ ν‖∇b‖2‖∇un‖2 ≤ νM1π‖∇un‖2;∣∣∣ ∫

En

un · (b · ∇)un dx
∣∣∣ = 0 since b is solenoidal;∣∣∣ ∫

En

un · (un · ∇)b dx
∣∣∣ ≤M1

∫
En

|x|−2|un|2dx ≤ 4M1‖∇un‖22;∣∣∣ ∫
En

un · (un · ∇)b dx
∣∣∣ =

∣∣∣ ∫
En

un · (un · ∇)(b− a∞ + a∞) dx
∣∣∣

≤
∣∣∣ ∫
En

un · (un · ∇)(b− a∞) dx
∣∣∣

≤
∣∣∣ ∫

R3

un · (un · ∇)(b− a∞) dx
∣∣∣

=
∣∣∣ ∫

R3

(b− a∞) · (un · ∇)un dx
∣∣∣

≤Mo

∫
E

|x|−1|un||∇un|dx ≤ 2Mo‖∇un‖22;∣∣∣ ∫
En

un · (b · ∇)b dx
∣∣∣ =

∣∣∣ ∫
En∩supp∇b

un · (b · ∇)b dx
∣∣∣

=
∣∣∣ ∫
En∩supp∇b

b · (b · ∇)un dx
∣∣∣

≤ ‖b‖24,En∩supp∇b‖∇un‖2,En∩supp∇b

≤ C(δ,R)‖∇b‖22‖∇un‖2,En∩supp∇b

≤ C(δ,R)‖∇b‖22‖∇un‖2
= C(δ,R)M2

1π
2‖∇un‖2.

Combining these calculations proves (7.2).

The proposition provides an apriori estimate for ‖∇un‖2, independent of n if
either Mo or M1 are sufficiently small. In what follows assume

max{2Mo; 4M1} < ν and set ν −max{2Mo; 4M1} = α > 0. (7.3)

For unbounded E, introduce the space

H = {completion of V in the norm ‖ · ‖H = ‖∇ · ‖2}.

This is a separable Hilbert space by the inner product 〈·, ·〉H = 〈∇·,∇·〉H . By
construction V ⊂ H, as elements in H are not required to be in L2(E;R3).
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7.2 The Limiting Process

If (7.3) holds, then {un} is a sequence bounded in H, and hence weakly pre-
compact in the same space. Every element u in the weak closure of {un}
is a weak solution of (4.5) in the following sense. First u ∈ H∗ and hence
u ∈ H by the Riesz identification map. Next, having fixed ϕ ∈ V, let F be its
support and consider the sequence {un|F } of restrictions of un to F . Since F
is bounded, by the embedding inequalities (2.5)-(2.6), the norm ‖∇ · ‖2;F is
equivalent to the norm of W 1,2(F ;R3). Therefore, there exists a constant C,
depending on F , such that

‖un|F ‖W 1,2(F ;R3) ≤ C uniformly in n.

By the Rellich-Kondrachov compact embedding theorem, the embedding
W 1,2(F ;R3) ↪→ Lp(F ;R3) is compact for all 1 ≤ p < 6. Therefore, a sub-
sequence {un′ |F } ⊂ {un|F } can be selected so that

{un′} → u weakly in W 1,2(F ;R3), and

{un′} → u strongly in Lr(F ;R3).
(7.4)

Theorem 7.1. Let (6.2), (6.3) and (7.3) hold. Then (4.5) admits a solution
u ∈ H satisfying

ν

∫
E

∇u : ∇ϕdx =

∫
E

{[u · (u · ∇) + u · (b · ∇) + b · (u · ∇)]ϕ + g ·ϕ} dx (7.5)

for all ϕ ∈ V.

Proof. Let u ∈ H be in the closure of {un} in the weak topology of H. Write
down (4.5) for un over En for ϕn ∈ Vn. Having fixed ϕ ∈ V, let F be its
support and let nF be so large that F ⊂⊂ Bn for all n ≥ nF . Then for such ϕ
fixed, (4.5) will hold for all n ≥ nF . Letting n→∞ along proper subsequences
depending of ϕ satisfying (7.4) establishes (7.5)

Remark 7.1 Notice that the indicated limiting process can be carried out
for a fixed ϕ of compact support and not for ϕ ∈ V . Thus (7.5) holds only for
ϕ ∈ V and, in general, not for ϕ ∈ V . Once u in the weak closure of {un} has
been identified, the choice of subsequences for which (7.4) holds depends on
the selected testing function ϕ. However, the limiting identity (7.5) continues
to hold for all ϕ ∈ V. Also, for unbounded E, solutions are found in H and
in general not in V .

8 Time-Dependent Navier-Stokes Equations in Bounded
Domains

Continue to denote by E ⊂ R3 an open, bounded set with boundary ∂E of
class C1 and satisfying the segment property. For 0 < T < ∞, let ET =
E × (0, T ), and introduce the spaces
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L2(0, T ;V ) = {v(·, t) ∈ V for a.e. t ∈ (0, T ) with finite norm ‖∇v‖2;ET } ;

W =

{
v(·, t) ∈ V for a.e. t ∈ (0, T ) with finite norm

‖v‖2W = ess sup(0,T ) ‖v(·, t)‖22;E + ‖∇v‖22;ET

}
;

C∞(0, T ;V) =
{
ϕ ∈ C∞(ET ;R3) with ϕ(·, t) ∈ V for all t ∈ (0, T )

}
.

For these spaces the operations of ∇ and div are meant weakly and with
respect to the space variables only. Functions ϕ ∈ C∞(0, T ;V) are divergence
free and of compact support in E, in the space variables, but are permitted
not to vanish for t = 0 or for t = T .

Lemma 8.1 Let v ∈W . Then v ∈ L 10
3 (ET ;R3) and

‖v‖ 10
3 ;ET ≤ γ

3
5 ‖v‖W .

where γ is the constant of the embedding of V into L6(E;R3).

Proof. ∫ T

0

∫
E

|v| 10
3 dxdt =

∫ T

0

∫
E

|v| 43 |v|2dxdt

≤
∫ T

0

(∫
E

|v|2dx
) 2

3
(∫

E

|v|6dx
) 1

3

dt

≤
(

ess sup
(0,T )

‖v(·, t)‖2;E

) 4
3

∫ T

0

‖v(·, t)‖26;E dt

≤ γ2‖v‖
10
3

W

The last inequality follows from the embedding (2.4).

Consider a viscous fluid of Reynolds number ν−1 filling a rigid, still container
E and stirred by a forcing term f . Its time evolution over (0, T ) is modeled,
formally, by the system

vt − ν∆v + (v · ∇)v +∇p = f in ET ;

div v = 0;

v(·, t)
∣∣
∂E

= 0;

v(·, 0) = vo in E.

(8.1)

The homogeneous boundary condition for the velocity v, also called no-slip
condition, says that at the boundary, the fluid will have zero velocity with
respect to the same boundary.

Multiply the first of these, formally, by ϕ ∈ C∞(0, T ;V) and integrate by
parts over Et for t ∈ (0, T ]. Using that div v = 0 gives
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E

v(t) ·ϕ(t)dx−
∫ t

0

∫
E

v ·ϕτ dxdτ

+

∫ t

0

∫
E

(
ν∇v : ∇ϕ+ (v · ∇)v ·ϕ

)
dxdτ

=

∫
E

vo ·ϕ(0)dx+

∫ t

0

∫
E

f ·ϕ dxdτ.

(8.2)

Assuming momentarily that v ∈ C∞(0, T ;V) take ϕ = v and observe that
the non-linear term gives, formally, zero contribution. Using also Lemma 8.1
yields the formal energy inequality

ess sup
(0,T )

‖v(t)‖22;E + 2ν‖∇v‖22;ET

≤ ‖vo‖22;E + 2

∫ T

0

∫
E

f · v dxdt

≤ ‖vo‖22;E + 2‖f‖2;ET ‖v‖2;ET

≤ ‖vo‖22;E + 2
√
T‖f‖2;ET ess sup

(0,T )

‖v(·, t)‖2;E .

(8.3)

In what follows, the set of parameters {ν, T, |E|, ‖vo‖2;E , ‖f‖2;ET } are the
given data and we will denote by γ a generic positive constant that can be
determined quantitatively, apriori only in terms of these. With this notation,
by a standard application of the Cauchy-Schwarz inequality, (8.3) implies

‖v‖W ≤ γ
(
‖vo‖2;E + ‖f‖2;ET

)
. (8.4)

These formal remarks suggest we define a weak solution to (8.1) as an element
of W satisfying (8.2) for all ϕ ∈ C∞(0, T ;V), and the energy estimate (8.4).
The membership v(·, t) ∈ V for a.e. t ∈ (0, T ) gives meaning, in the sense
of traces, to the homogeneous boundary data on ∂E. The same membership
insures that div v = 0 weakly in ET . As for the initial data, observe that, for
solutions in this class, all integrals in (8.2) are well defined. As a consequence,
by Vitali’s absolute continuity of the integral, all integrals extended over Et
tend to zero as t→ 0. Therefore,

lim
t→0

∫
E

v(t) ·ϕ(t)dx =

∫
E

vo ·ϕ(0)dx for all ϕ ∈ C∞(0, T ;V).

Thus the initial datum vo is taken in the sense of such a weak continuity of
v(·, t) in L2(E;R3). The same continuity also implies that div vo = 0 weakly
in E. The latter emerges then as a compatibility condition to be imposed on
the initial datum vo for a solution to exist.

Theorem 8.1 (Hopf [20]). Let f ∈ L2(ET ;R3) and let vo ∈ L2(E;R3) be
weakly divergence free in E. Then there exists a weak solution to (8.1).

Remark 8.1 In the following we refer to such a solution as Hopf’s solution.
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9 The Galerkin Approximations

Let e = (e1, . . . , en, . . . ) be a complete system for V . Since V is dense in V ,
by sequential selection and Zorn’s lemma, the elements ej can be chosen in
V. Also by sequential orthonormalization, while not necessarily orthonormal
with respect to the inner product 〈·, ·〉V defined in (3.1), they can be chosen
to be orthonormal in L2(E;R3), i.e., 〈ei, ej〉H = δij . Write a possible solution
in the form

v = vn + vr,n where vn =
n∑
j=1

cj(t)ej and vr,n =
∑
j>n

cj(t)ej (9.1)

for scalar functions (0, T ) 3 t→ cj(t). The remainder vr,n of the series satisfies∥∥vr,n‖2V =
∥∥vr,n‖22 + ‖∇vr,n‖22 → 0 as n→∞.

Since (e1, . . . , en, . . . ) is complete in V , it is also complete in L2(E;R3). There-
fore, by the indicated orthonormalization in L2(E;R3) and Parseval’s identity

‖v‖22;E =
∑
j≥1

c2j .

Write v in (8.2) in the form (9.1) and observe that the terms involving vr,n
tend to zero as n → ∞. This suggests defining an approximate solution to
(8.1) as a function vn ∈ C∞(0, T ;V), with vn =

∑n
i=1 cn,iei, satisfying (8.2)

for ϕ = ei, for all i = 1, . . . , n, i.e.,∫ T

0

[
c′n,i +

n∑
j=1

cn,j

{∫
E

ν∇ej : ∇eidx
}sym

ij

+
n∑

j=1

cn,j

{∫
E

ei · (vn · ∇)ejdx
}skew

ij
dτ −

∫
E

f · eidx
]
dτ = 0.

(9.2)

For fixed n ∈ N the terms Asym
ij = {· · · }sym

ij define the entries of a n× n time

independent symmetric matrix Asym
n , whereas the terms Askew

ij = {· · · }skew
ij

define the entries of a n×n skew symmetric matrix Askew
n linearly dependent

on the time dependent vector cn = (cn,1, . . . , cn,n). The last term defines a
vector fn = (f1, . . . , fn) dependent on t. Set also

co,i =

∫
E

vo · ei dx, co = (co,1, . . . , co,n), cn(0) = co.

Requiring that the integrand over (0, T ) in (9.2) vanishes identically, gives the
differential system in cn

c′n,i +

n∑
j=1

(
Asym
ij +Askew

ij

)
cn,j = fi with cn,i(0) = co,i. (9.3)

Unique solvability of this system hinges upon some apriori estimates which
we derive next.
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Proposition 9.1 Let cn = (cn,1, . . . , cn,n) be a solution to (9.3) and set vn =∑n
i=1cn,iei. There is a constant γ depending only on the data and independent

of n and i, such that

‖vn‖W ≤ γ;

ess sup
(0,T )

|cn,i(t)| ≤ γ;

|cn,i(t2)− cn,i(t1)| ≤ γ(1 + ‖∇ei‖∞;E)
√
t2 − t1

(9.4)

for all (t1, t2) ⊂ (0, T ).

Proof. Multiply (9.3) by cn,i, add over i = 1, . . . , n, and observe that
ctnAskew

n cn = 0, where ctn denotes the transpose of the vector cn. This gives

1

2

d

dt

n∑
i=1

c2n,i + ν

∫
E

∇
n∑
j=1

cn,jej : ∇
n∑
i=1

cn,ieidx

=
n∑
i=1

ficn,i ≤
( n∑
i=1

f2
i

) 1
2
( n∑
i=1

c2n,i

) 1
2

= ‖fn(t)‖2;E‖vn(t)‖2;E .

Equivalently

1

2

d

dt
‖vn(t)‖22;E + ν‖∇vn(t)‖22;E ≤ ‖fn(t)‖2;E‖vn(t)‖2;E .

To prove the first of (9.4), integrate this over (0, t) ⊂ (0, T ) to get

ess sup
(0,T )

‖vn(t)‖22;E + 2ν‖∇vn‖22;ET

≤ ‖vo‖22;E + 2
√
T‖fn‖2;ET ess sup

(0,T )

‖vn(t)‖2;E .

The proof is concluded by a standard application of Cauchy-Schwarz inequal-
ity in the last term. The second of (9.4) follows from this and Parseval’s
identity. To prove the last of (9.4), return to (9.3) and, for fixed i ∈ {1, . . . , n},
estimate

|c′n,i| ≤ ν
∣∣∣ ∫

E

∇vn : ∇ei dx
∣∣∣+
∣∣∣ ∫

E

(vn · ∇)ei · vn dx
∣∣∣+

∫
E

|f | dx

≤ν
∫
E

|∇vn||∇ei| dx+

∫
E

|vn|2|∇ei| dx+

∫
E

|f | dx

≤ν‖∇ei‖∞;E

∫
E

|∇vn| dx+ ‖∇ei‖∞;E

∫
E

|vn|2 dx+

∫
E

|f | dx

≤ν‖∇ei‖∞;E‖∇vn(t)‖2;E |E|
1
2 + ‖∇ei‖∞;E

(
ess sup
(0,T )

‖vn(t)‖22;E
)

+ |E|
1
2 ‖f(t)‖2;E

≤‖∇ei‖∞;E

(
ν|E|

1
2 ‖∇vn(t)‖2;E + ess sup

(0,T )

‖vn(t)‖22;E
)

+ |E|
1
2 ‖f(t)‖2;E .
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Integrating over (t1, t2) ⊂ (0, T ) and using the first of (9.4) gives

|cn,i(t2)− cn,i(t1)| ≤
∣∣∣ ∫ t2

t1

c′n,i(t)dt
∣∣∣ ≤ ∫ t2

t1

|c′n,i(t)|dt

≤ν‖∇ei‖∞;E |E|
1
2

∫ t2

t1

(∫
E

|∇vn|2 dx
) 1

2

dt

+ ‖∇ei‖∞;E ess sup
(0,T )

‖vn(t)‖22;E(t2 − t1)

+ |E| 12
∫ t2

t1

(∫
E

|f |2 dx
) 1

2

dt

≤ γ(ν, T, |E|, ‖vo‖2, ‖f‖2;ET )(1 + ‖∇ei‖∞)
√
t2 − t1.

Existence and uniqueness of solutions to (9.3) can be established in the small,
for example by a contraction fixed point argument. Then the solution can be
continued in the whole (0, T ), so long as it remains bounded. Such a bound,
independent of t, n and i, is insured by the second of (9.4).

10 Selecting Subsequences Strongly Convergent in
L2(ET ;R3)

It follows from Proposition 9.1 that for fixed j ∈ N the sequences {cn,j}∞n=1

are equibounded and equicontinuous, so that by the Ascoli-Arzelà theorem
a subsequence {cnj ,j} ⊂ {cn,j}∞n=1 can be selected converging to some cj

uniformly in (0, T ). By the Cantor diagonalization procedure a further subse-
quence can be selected and relabelled with n, such that {cn,j} → cj uniformly
in [0, T ]. However, it should be noted that, because of the last of (9.4), the
rate of convergence depends on the index j. Set formally

v =
∞∑
j=1

cjej .

Proposition 10.1 For the same constant γ as in the first of (9.4) there holds

ess sup
(0,T )

‖v(·, t)‖2;E + ‖∇v‖2;ET ≤ γ.

Moreover {vn(·, t)} → v(·, t) weakly in L2(E;R3), uniformly in t ∈ (0, T ).

Proof. For a fixed positive integer k and all n

k∑
j=1

c2j (t) ≤
∣∣∣ k∑
j=1

c2j (t)−
k∑
j=1

c2n,j(t)
∣∣∣+

k∑
j=1

c2n,j(t)

≤
k∑
j=1

∣∣c2j (t)− c2n,j(t)∣∣+ ‖vn(·, t)‖22;E .
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By the first of (9.4) the last term is bounded by a constant γ depending only
upon the data and independent of t and n. Letting n → ∞ the first term in
the right-hand side tends to zero by the uniform convergence of {cn,j} → cj
for j = 1, . . . , k. Thus

∑k
j=1c

2
j (t) ≤ γ. Since k is arbitrary, the series

∑k
j=1c

2
j

converges to ‖v(·, t)‖22;E and ess sup(0,T ) ‖v(·, t)‖2;E ≤ γ. To prove the second

statement, fix k ∈ N and take first a function of the form ϕ =
∑k
j=1ϕjej . For

such a function, by the othonormality of (e1, . . . , en, . . . )∫
E

(vn − v) ·ϕ dx =
k∑
j=1

(cn,j − cj)ϕj → 0 as n→∞

by the uniform convergence of {cn,j} → cj for j = 1, . . . , k. For a general
ϕ =

∑
ϕjej ∈ L2(E;R3), having fixed ε > 0, there exists kε, depending on ε

and ϕ, such that
∑
j>kε

ϕ2
j < ε. Then estimate

∣∣∣ ∫
E

[vn(t)− v(t)] ·ϕ dx
∣∣∣ ≤ kε∑

j=1

|cn,j(t)− cj(t)| |ϕj |

+ ess sup
(0,T )

‖vn(t)− v(t)‖2;E

( ∑
j>kε

ϕ2
j

) 1
2

.

By the first of (9.4) a further subsequence out of {vn} can be selected and re-
labeled with n, such that {vn} → v′ and {∇vn} → ∇w weakly in L2(ET ;R3).
By the uniqueness of the weak limit v′ = v and ∇w = ∇v. By the weak lower
semicontinuity of the norm and the first of (9.4)

‖∇v‖2;ET ≤ lim inf ‖∇vn‖2;ET ≤ γ.

Proposition 10.2 {vn} → v strongly in L2(ET ;R3).

The proof uses the following lemma

Lemma 10.1 (Friedrichs [14]) For every ε > 0 there exist a positive inte-
ger Nε depending only on ε and |E|, and independent of vn, and Nε linearly
independent functions {ψ`}

Nε
`=1 ⊂ L2(E;R3) such that

‖vn − v‖22;ET ≤
Nε∑̀
=1

∫ T

0

∣∣∣ ∫
E

(vn − v) ·ψ`dx
∣∣∣2dt+ ε‖∇(vn − v)‖22;ET . (10.1)

Inequality (10.1) is a special case, applied to (vn − v) of a more general
Friedrichs’ Lemma, which we will prove in Section 10c of the Complements.

Proof (of Proposition 10.2). Fix ε > 0 and determine Nε and the system
{ψ`}

Nε
`=1 ⊂ L2(E;R3). Let now n → ∞ in (10.1). The first term goes to zero

because of the weak uniform convergence of (vn − v) in L2(E;R3). The last
term is majorized by 2γ2ε, where γ is the constant in the first of (9.4).
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11 The Limiting Process and Proof of Theorem 8.1

Let ϕk =
∑k
`=1ϕ`e` for fixed k ∈ N. Multiply (9.3) by ϕi, add for i = 1, . . . , k

and integrate over (0, t) ⊂ (0, T ) to obtain for n ≥ k∫
E

vn(t) ·ϕk(t)dx−
∫ t

0

∫
E

vn ·ϕk,τdxdτ

+ ν

∫ t

0

∫
E

∇vn : ∇ϕkdxdτ

+

∫ t

0

∫
E

(vn · ∇)vn ·ϕkdxdτ

=

∫
E

vo ·ϕk(0)dx+

∫ t

0

∫
E

f ·ϕkdxdτ.

In turn, this is averaged in time over (t, t + h) ⊂ (0, T ), for a fixed h > 0,
sufficiently small so that 0 < t+ h < T . Denoting by

−
∫ t+h

t

{· · · }dτ =
1

h

∫ t+h

t

{· · · }dτ

such averages, gives

−
∫ t+h

t

∫
E

vn(τ) ·ϕk(τ) dxdτ −−
∫ t+h

t

∫ τ

0

∫
E

vn(s) ·ϕk,s(s) dxdsdτ

+ ν−
∫ t+h

t

∫ τ

0

∫
E

∇vn(s) : ∇ϕk(s) dxdsdτ

+−
∫ t+h

t

∫ τ

0

∫
E

(vn(s) · ∇)vn(s) ·ϕk(s) dxdsdτ

=

∫
E

vo ·ϕk(0) dx+−
∫ t+h

t

∫ τ

0

∫
E

f(s) ·ϕk(s) dxdsdτ.

Let n→∞ by keeping k fixed, to get

−
∫ t+h

t

∫
E

v(τ) ·ϕk(τ) dxdτ −−
∫ t+h

t

∫ τ

0

∫
E

v(s) ·ϕk,s(s) dxdsdτ

+ ν−
∫ t+h

t

∫ τ

0

∫
E

∇v(s) : ∇ϕk(s) dxdsdτ

+−
∫ t+h

t

∫ τ

0

∫
E

(v(s) · ∇)v(s) ·ϕk(s) dxdsdτ

=

∫
E

vo ·ϕk(0) dx+−
∫ t+h

t

∫ τ

0

∫
E

f(s) ·ϕk(s) dxdsdτ.

The various limits are justified by the weak convergence {∇vn} → ∇v and
the strong convergence {vn} → v. In particular, such a strong convergence
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permits one to pass to the limit in the non-linear term. In Section 11c of
the Complements we will discuss a counterexample to show that in general,
having weak convergence does not suffice to pass to the limit in such a term.
Next, take ϕ ∈ C∞(0, T ;V), write it as ϕ =

∑
ϕjej , and let ϕk be its

truncated series. Because of the predicated smoothness of ϕ

{ϕk}, {∇ϕk}, {ϕk,t} → ϕ, ∇ϕ, ϕt in L2(ET ),

and also {ϕk} → ϕ in L5(ET ;R3). Compute and estimate

lim sup
k→∞

∣∣∣ ∫∫
Et

∇v : ∇ϕk dxdτ −
∫∫

Et

∇v : ∇ϕ dxdτ
∣∣∣

≤ ‖∇v‖2;ET lim
k→∞

‖∇(ϕk −ϕ)‖2;ET = 0.

The limits in all the other terms, but the non-linear one, are treated similarly.
For the non-linear term

lim sup
k→∞

∣∣∣ ∫∫
Et

(v · ∇)v ·ϕk dxdτ −
∫∫

Et

(v · ∇)v ·ϕk dxdτ
∣∣∣

≤ ‖∇v‖2;ET ‖v‖ 10
3 ;ET lim

k→∞
‖ϕk −ϕ‖5;ET .

Letting k →∞ yields, for all ϕ ∈ C∞(0, T ;V)

−
∫ t+h

t

∫
E

v(τ) ·ϕ(τ) dxdτ −−
∫ t+h

t

∫ τ

0

∫
E

v(s) ·ϕs(s) dxdsdτ

+ ν−
∫ t+h

t

∫ τ

0

∫
E

∇v(s) : ∇ϕ(s) dxdsdτ

+−
∫ t+h

t

∫ τ

0

∫
E

(v(s) · ∇)v(s) ·ϕ(s) dxdsdτ

=

∫
E

vo ·ϕ(0) dx+−
∫ t+h

t

∫ τ

0

∫
E

f(s) ·ϕ(s) dxdsdτ.

Finally let h→ 0 and notice that

lim
h→0
−
∫ t+h

t

∫
E

v(τ) ·ϕ(τ) dxdτ =

∫
E

v(t) ·ϕ(t) dx for a.e. t ∈ (0, T ),

since, for integrable functions in (0, T ), a.e. t is a Lebesgue point. Thus, the
function v so constructed satisfies the definition (8.2) of weak solution. It
should be stressed that the testing functions ϕ cannot, in general be taken out
of C1(0, T ;V ) as the limiting process for k →∞ requires a further smoothness,
guaranteed in general by taking ϕ ∈ C∞(0, T ;V).
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12 Higher Integrability and Some Consequences

The Hopf solution has a limited degree of regularity due to the non-linear term
(v · ∇)v · ϕ. The weak formulation (8.2) holds for all ϕ ∈ C∞(0, T ;V) ⊂ W ,
whereas the solution v is required to be in W . If in (8.2) one could take
ϕ = v then, since div v = 0, the non linear term would vanish and further
regularity could be inferred on v. Optimal local and global regularity of the
Hopf solutions is unknown and it is a current major topic of investigation. To
underscore this point, here we indicate some consequences of assuming higher
integrability on v and on the various terms of (8.1), including the pressure
term ∇p.

Lemma 12.1 Let v be a Hopf solution of (8.1). Then (v ·∇)v ∈ L 5
4 (ET ;R3),

and
‖(v · ∇)v‖ 5

4 ;ET ≤ ‖v‖ 10
3 ;ET ‖∇v‖2;ET .

Proof. Let q, q′ > 1 be Hölder conjugate and for p > 1 to be chosen, compute
and estimate∫∫

ET

|(v · ∇)v|pdxdt ≤
(∫∫

ET

|∇v|pqdxdt
) 1
q
(∫∫

ET

|v|pq
′
dxdt

) 1
q′

(12.1)

Choose pq = 2 and pq′ = 10
3 which yields p = 5

4 .

Assume momentarily that ∇p ∈ L
5
4

loc(ET ;R3) and set

Φ = f −∇p− (v · ∇)v ∈ L
5
4

loc(ET ;R3).

Then the weak formulation (8.2) yields4

vt − ν∆v = Φ weakly in ET for all ϕ ∈ C∞o (ET ;R3). (12.2)

This is a linear parabolic system with forcing term Φ ∈ L
5
4

loc(ET ;R3). Then
by classical parabolic theory [11], the weak derivatives vxixj and vt are in

L
5
4

loc(ET ;R3). The argument can be repeated to yield further regularity on v.
Therefore, assuming a moderate degree of integrability of ∇p yields a consid-
erably higher regularity on v.

In § 20, we will get back to the regularity of the pressure for Hopf solutions.

12.1 The Lp,q(ET ;RN) Spaces

For p, q > 1 let

Lp,q(ET ;RN ) =

Lebesgue measurable functions f : ET → RN with

finite norm ‖f‖p,q;ET =
( ∫ T

0
‖f(·, t)‖qp;E dt

) 1
q

 .

4see 12.1. of the Complements.
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In what follows we let p > N and q > 2 be linked by

N

p
+

2

q
= 1. (12.3)

Condition (12.3) is known as the Ladyzhenskaya-Prodi-Serrin condition.
Recall also the following special case of the Gagliardo-Nirenberg embed-

ding inequality5

‖v‖r;E ≤ γ(N, p)‖∇v‖
N
p

2;E‖v‖
2
q

2;E , where r =
2p

p− 2
.

Lemma 12.2 There exists a constant γ(N, p) depending only on N and p,
such that for any triple (u,v,w) with u ∈ Lp,q(ET ;RN ), v ∈W , and w ∈W ,
there holds∫ T

0

∫
E

∣∣(v · ∇)w · u
∣∣dxdt ≤ γ‖u‖p,q;ET ‖v‖W ‖∇w‖2;ET ;∫ T

0

∫
E

∣∣(w · ∇)w · u
∣∣dxdt

≤ γ
(∫ T

0

‖u(·, t)‖qp,E‖w(·, t)‖22;E dt
) 1
q ‖∇w‖1+N

p

2;ET
.

(12.4)

Proof. By Hölder’s inequality with conjugate exponents

1

r
+

1

p
=

1

2
, i.e.,

1

r
+

1

p
+

1

2
= 1,

using also the indicated special case of Gagliardo-Nirenberg inequality we have∫
E

∣∣(v · ∇)w · u
∣∣dx ≤ ‖v‖r;E‖∇w‖2;E‖u‖p;E

≤ γ‖v‖
2
q

2;E‖∇v‖
N
p

2;E‖∇w‖2;E‖u‖p;E .

Next integrate over (0, T ) and use Hölder’s inequality with conjugate expo-
nents

N

2p
+

1

q
+

1

2
= 1,∫ T

0

∫
E

∣∣(v · ∇)w · u
∣∣dxdt ≤ γ(∫ T

0

‖v(·, t)‖22;E‖u(·, t)‖qp;E dt
) 1
q

×
(∫ T

0

‖∇v(·, t)‖22,E dt
) N

2p
(∫ T

0

‖∇w(·, t)‖22;E dt
) 1

2

≤ γ
(

ess sup
(0,T )

‖v(·, t)‖2;E

) 2
q ‖∇v‖

N
p

2;ET
‖∇w‖2;ET ‖u‖p,q;ET

≤ γ‖v‖W ‖∇w‖2,ET ‖u‖p,q;ET .
This proves the first of (12.4). The proof of the second is the same by inter-
changing the roles of v and w.

5See [6], Chap. 10, Theorem 1.1.
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12.2 The Case N = 2

Lemma 12.3 Let N = 2. Then for all v ∈ W (12.3) holds with p = q = 4,
and

‖v‖4;ET ≤ π−
1
4 ‖v‖W .

Proof. The Gagliardo-Nirenberg multiplicative inequality for u ∈ W 1,p
o (E)

reads6

‖u‖p∗;E ≤ γ(N, p)‖∇u‖p;E where p∗ =
Np

N − p
and 1 ≤ p < N

for a constant γ(N, p) depending only on N and p. When p = 1 the optimal

constant is γ(N, 1) = 1
N

(
N
ωN

) 1
N

, where ωN is the measure of the unit sphere

in RN . Apply the inequality for N = 2, with u = |v|2 and p = 1 to get(∫
E

|v|4dx
) 1

2 ≤ 1

2

1√
π

∫
E

∣∣∇|v|2∣∣dx ≤ 1√
π

∫
E

|v|
∣∣∇v

∣∣dx
≤ 1√

π

(∫
E

|v|2dx
) 1

2

(∫
E

|∇v|2dx
) 1

2

≤ 1√
π

(
ess sup

(0,T )

∫
E

|v|2dx
) 1

2

(∫
E

|∇v|2dx
) 1

2

.

From this ∫
E

|v(·, t)|4dx ≤ 1

π
‖v‖2W

∫
E

|∇v(·, t)|2dx.

Integrating over (0, T ) yields

‖v‖44;ET ≤
1

π
‖v‖2W ‖∇v‖22;ET .

Corollary 12.1 Any Hopf solution to (8.1) for N = 2 satisfies (12.3) for
p = q = 4.

13 Energy Identity for the Homogeneous Boundary
Value Problem with Higher Integrability

We get back to (8.1) with f = 0 to which we refer as the homogeneous problem
and label it as (8.1)o. A weak solution is meant in the sense of (8.2)o, with
f = 0, for all ϕ ∈ C∞(0, T ;V). While a weak solution has been constructed
by the Hopf’s procedure we assume here that one is given and meant weakly.

6See [6], Chapter 10, Corollary 1.1.
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Proposition 13.1 (Prodi [35]) Let v be a weak solution to (8.1)o. More-
over, assume that v ∈ Lp,q(ET ;RN ) with p > N and q > 2 satisfying (12.3).
Then

‖v(·, t)‖22;E + 2ν‖∇v‖22;ET = ‖vo‖22;E for a.e. t ∈ (0, T ). (13.1)

Proof. The proof consists in taking formally ϕ = v in (8.2)o. The assumption
(12.3) makes this possible by a series of approximations. First, since v ∈
L2(0, T ;V ) there exists a sequence {vk} ⊂ C∞(0, T ;V) such that {vk} → v
in L2(0, T ;V ). Next, let J(·) be the Friedrichs’ mollifying kernel in R and
denote by Jε(·) its rescaled by a parameter ε ∈ (0, 1), i.e.

J(τ) = C

{
exp

(
τ2

τ2−1

)
for |τ | < 1,

0 for |τ | ≥ 1,
Jε(τ) =

1

ε
J
(τ
ε

)
,

where C > 0 is a constant that normalizes the kernel J . Notice that

J(−t) = J(t), J ′(−t) = −J ′(t).

Then for a.e. t ∈ (0, T ] fixed, set

vε,k(τ) =

∫ t

0

Jε(τ − s)vk(s) ds; vε(τ) =

∫ t

0

Jε(τ − s)v(s) ds. (13.2)

One verifies that vk,ε ∈ C∞(0, T ;V) and therefore, it is an admissible test
function in the weak formulation (8.2)o. Such a choice gives∫

E

v(t) · vε,k(t) dx−
∫ t

0

∫
E

v · vε,k;τ dxdτ

+

∫ t

0

∫
E

(
ν∇v : ∇vε,k + (v · ∇)v · vε,k

)
dxdτ

=

∫
E

vo · vε,k(0) dx.

Letting k →∞ now gives∫
E

v(t) · vε(t) dx−
∫ t

0

∫
E

v · vε;τ dxdτ

+

∫ t

0

∫
E

(
ν∇v : ∇vε + (v · ∇)v · vε

)
dxdτ

=

∫
E

vo · vε(0) dx.

(13.3)

The various limits, but the first one and the one regarding the non-linear
term, are justified since {vε,k} → vε in L2(0, T ;V ).
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The limit of the first term is justified, for fixed ε > 0 since {vk} → v in
L2(ET ;RN ) and the definition of vε. Indeed,∣∣∣ ∫

E

v(t) · [vε,k(t)− vε(t)] dx
∣∣∣

≤
∫
E

|v(t)|
∫ t

0

Jε(t− s)|vk(s)− v(s)| dsdx

=

∫ t

0

Jε(t− s)
(∫

E

|v(t)||vk(s)− v(s)
∣∣ dx)ds

≤
∫ t

0

Jε(t− s)‖v(t)‖2;E‖vk(s)− v(s)‖2;E ds

≤ ess sup
(0,T )

‖v(t)‖2;E

∫ T

0

Jε(t− s)‖vk(s)− v(s)‖2;E ds

≤ ‖v‖W
(∫

R
J2
ε (t) dt

) 1
2 ‖vk − v‖2;ET .

The last term tends to zero as k →∞ since {vk} → v in L2(ET ;RN ). As for
the non-linear term, compute and estimate∣∣∣ ∫ t

0

∫
E

(v · ∇)v · (vε,k − vε) dxdτ
∣∣∣ =

∣∣∣ ∫ t

0

∫
E

(v · ∇)(vε,k − vε) · v dxdτ
∣∣∣

≤ γ‖v‖W ‖v‖p,q;ET ‖∇(vε,k − vε)‖2;ET ,

by virtue of Lemma 12.2. This is indeed the role of the assumption (12.3) and
the ensuing Lemma. The last term tends to zero as k →∞ since {vε,k} → vε
in L2(0, T ;V ).
Next, we let ε→ 0 in (13.3). For the first term we have∫

E

v(t) · vε(t)dx =

∫
E

v(t)

∫ t

0

Jε(t− s)v(s) dsdx

=

∫
E

∫ t

0

Jε(η)v(t− η) · v(t) dηdx

=

∫
E

∫ t

0

Jε(η)|v(t)|2dηdx

+

∫
E

∫ t

0

Jε(η)v(t) · [v(t− η)− v(t)] dηdx.

Since Jε is even and it has been normalized, as ε→ 0,∫
E

∫ t

0

Jε(η)|v(t)|2dηdx → 1

2

∫
E

|v(t)|2dx.

On the other hand



46 2 ANALYSIS OF THE NAVIER-STOKES EQUATIONS∣∣∣ ∫ t

0

Jε(η)

∫
E

v(t)·[v(t− η)− v(t)] dxdη
∣∣∣

≤
∫ t

0

Jε(η)
∣∣∣ ∫
E

v(t) · [v(t− η)− v(t)] dx
∣∣∣dη

and the integral tends to zero as |η| < ε → 0 by the weak continuity of
t → v(t) in L2(E). A similar result holds for the right-hand side of (13.3).
The second term is identically zero in ε. Indeed, after interchanging the order
of integration, it can be written as∫

E

(∫ t

0

∫ t

0

J ′ε(τ − s)v(s) · v(τ) dsdτ
)
dx.

Now the integral in (· · · ), for a.e. fixed x ∈ E, is a double integral ex-
tended over the rectangle of vertices {(0, 0), (t, 0), (t, t), (0, t)}, which, in turn
is the union of two disjoint, equal triangles of vertices {(0, 0), (t, 0), (t, t)} and
{(0, 0), (t, t), (0, t)}. Now the argument v(s) ·v(τ) is even with respect to these
triangles, whereas J ′ε(τ − s) is odd.
Next,∣∣∣ ∫ t

0

∫
E

∇v : ∇(vε−v) dxdτ
∣∣∣ ≤ ∫

E

∫ t

0

|∇v|
∫
R
Jε(τ−s)|∇[v(s)−v(τ)]| dsdτdx

and this tends to zero as ε→ 0. Finally, for the non-linear term compute and
estimate, with the aid of Lemma 12.2,∫ t

0

∫
E

(v · ∇)v ·
∫ t

0

Jε(τ − s)[v(s)− v(τ)] dxdsdτ

≤ γ‖v‖W ‖v‖p,q;ET
(∫

E

∫ t

0

(∫ t

0

Jε(τ − s)[∇v(s)−∇v(τ)]ds
)2

dτdx
) 1

2

which tends to zero as ε → 0 by the property of the mollifiers. Observe that
the limit of the non-linear term

lim
ε→0

∫ t

0

∫
E

(v · ∇)v · vε dxdτ =

∫ t

0

∫
E

(v · ∇)v · v dxdτ = 0

gives zero contribution since div v = 0. Collecting these calculations proves
(13.1).

Remark 13.1 For N = 2 condition (12.3) is redundant, as already stated in
Lemma 12.3.

14 Stability and Uniqueness for the Homogeneous
Boundary Value Problem with Higher Integrability

Proposition 14.1 ([31]) Let v and u be two weak solutions of (8.1) with
f = 0, originating from initial data vo and uo in L2(E;RN ), meant in the
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sense of (8.2)o, for all ϕ ∈ C∞(0, T ;V). Moreover, assume that at least one
v or u, say for example u is in Lp,q(ET ;RN ) with p > N and q > 2 satisfying
(12.3). Assume finally that they both satisfy the energy estimates

‖v(·, t)‖22;E + 2ν‖∇v‖22;Et ≤ ‖vo‖
2
2;E

‖u(·, t)‖22;E + 2ν‖∇u‖22;ET ≤ ‖uo‖
2
2;E

for a.e. t ∈ (0, T ). (14.1)

Then, there exist a constant γ depending only upon N and ν such that setting
w = v − u there holds

‖w(·, t)‖22;E ≤ ‖wo‖22;E exp

{
γ

∫ t

0

‖u(·, τ)‖qp;E dτ
}

for a.e. t ∈ (0, T ).

Remark 14.1 If both v and u are in Lp,q(ET ;RN ) with p > N and q > 2
satisfying (12.3) then by Proposition 13.1, the energy estimates (14.1) are
satisfied. The Proposition is a statement of stability and uniqueness. If N = 2,
v and u are both in L4(ET ;R2) and therefore, weak solutions are unique.

Proof. Let v and u be two weak solutions to (8.1) originating from initial
data vo and uo in L2(E), meant in the sense of (8.2)o, with f = 0, for all
ϕ ∈ C∞(0, T ;V). In the weak formulation of v take the testing function
uε,k defined as in (13.2) and in the weak formulation of u take the testing
function vε,k. Then let k → ∞ by the same arguments as in the proof of
Proposition 13.1, and add the resulting identities getting∫

E

[v(t) · uε(t) + vε(t) · u(t)] dx

−
∫
E

(∫ t

0

∫ t

0

J ′ε(τ − s)[v(τ) · u(s) + v(s) · u(τ)]dsdτ
)
dx

+ ν

∫ t

0

∫
E

(
∇v : ∇uε +∇vε : ∇u

)
dxdτ

+

∫ t

0

∫
E

[
(v · ∇)v · uε + (u · ∇)u · vε

]
dxdτ

=

∫
E

[vo · uε(0) + vε(0) · uo] dx.

Arguing as in the proof of Proposition 13.1, the second integral is identically
zero in ε since the argument [v(τ)u(s) + v(s)u(τ)] is even with respect to the
two triangles of vertices {(0, 0), (t, 0), (t, t)} and {(0, 0), (t, t), (0, t)} and J ′ε is
odd with respect to the same triangles. We may now let ε → by the same
arguments and get
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E

v(·, t) · u(·, t) dx+ 2ν

∫ t

0

∫
E

∇v : ∇u dxdτ

+

∫ t

0

∫
E

[
(v · ∇)v · u + (u · ∇)u · v

]
dxdτ

=

∫
E

vo · uo dx.

(14.2)

Next observe that since weak solutions are divergence free∫ t

0

∫
E

(v · ∇)v · u dxdτ = −
∫ t

0

∫
E

(v · ∇)v ·w dxdτ∫ t

0

∫
E

(u · ∇)u · v dxdτ =

∫ t

0

∫
E

(u · ∇)u ·w dxdτ

where we have set w = v−u. Using again that w is divergence free, the sum
of these terms equals∫ t

0

∫
E

[
(v · ∇)v · u + (u · ∇)u · v

]
dxdτ = −

∫ t

0

∫
E

(w · ∇)w · u dxdτ.

Adding the energy inequalities (14.1) and subtracting (14.2) multiplied by 2
gives

‖w(t)‖22;E + 2ν‖∇w‖22;Et ≤ ‖wo‖22;E +
∣∣∣ ∫ t

0

∫
E

(w · ∇)w · u dxdτ
∣∣∣.

The right hand side is estimated by the second of (12.4) of Lemma 12.2, and
Young’s inequality with conjugate exponents 1

q and 1
2 + N

2p , and gives∣∣∣ ∫ t

0

∫
E

(w · ∇)w · u dxdτ
∣∣∣ ≤ γ ∫ t

0

‖u(τ)‖qp;E‖w(τ)‖22;E dτ + 2ν‖∇w‖22;Et ,

for a constant γ depending only upon N and ν. Combining these estimates
gives

‖w(t)‖22;E ≤ ‖wo‖22;E + γ

∫ t

0

‖u(τ)‖qp;E‖w(τ)‖22;E dτ.

The proof is concluded by an application of Gronwall’s inequality.

15 Local Regularity of Solutions with Higher
Integrability

We continue assuming the higher integrability (12.3), and we address the
smoothness of weak solutions. Notice that there is a difference between study-
ing the regularity of solutions to the initial-boundary value problem (8.1) or
the interior regularity.
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In this second case, we deal with the intrinsic properties of the Navier-
Stokes equations; indeed, we consider a local, weak solution in ET , namely v
which is weakly divergence free in ET , and such that for any subset

Ωt1,t2
def
= Ω × (t1, t2) ⊂⊂ ET ,

we have
v ∈ L2(t1, t2;W 1,2(Ω)) ∩ L∞(t1, t2;L2(Ω)),

and v satisfies (8.2) for all soleinodal test functions ϕ ∈ C∞o (Ωt1,t2).
If we consider a function ψ = ψ(x) harmonic in Ω and an integrable

function a = a(t), it is a matter of straightforward computation to check that

v = a(t)∇ψ(x)

is a local, weak solution of the Navier-Stokes equations for f = 0. Hence, it
is infinitely differentiable with respect to space, but it might have integrable
singularities with respect to time.

This example, which is due to Serrin ([40]), suggests that the time dif-
ferentiability of a weak solution is directly connected to the time regularity
which is assumed from the very beginning.

Moreover, as pointed out by Galdi (see [17, Page 41]), these highly irregular
solutions exist because possible singularities are absorbed by the pressure
term. As summarized by Struwe in [49], local regularity properties are not
influenced by the nonlocal effects of the pressure, as long as we are interested
only in boundedness and spatial regularity.

The situation is different if one considers the initial-boundary value prob-
lem (8.1) and its weak formulation (8.2), where one can hope to gain regularity
in time from the assigned conditions. This has to do with the incompressibility
of the fluids, since a sudden modification of the boundary value of the motion
will be immediately felt throughout the whole flow region.

In this section we report a sufficient condition for the interior regularity,
whereas in a subsequent section we will get back to regularity for the initial-
boundary value problem.

Theorem 15.1 ([40]). Let v be a local, weak solution of the Navier-Stokes
equations in ET in the sense defined before.

Assume that f is conservative and at least in L1,1(ET ;RN ), and that v ∈
Lp,q(ET ;RN ) where p > N , q > 2 satisfy (12.3). Then v is of class C∞

with respect to the space variable x, and each space derivative is bounded in
compact subsets of ET .

If, in addition, vt ∈ L2,s(ET ;RN ) for some s ≥ 1, then the space deriva-
tives are absolutely continuous functions of time. Moreover, there exists a
strongly differentiable function p = p(x, t) such that

vt − ν∆v + (v · ∇)v +∇p = f (15.1)

almost everywhere in ET .
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Remark 15.1 Due to the local nature of the result, without loss of generality,
one could more generally assume that v ∈ Lp,q(K;RN ) for any K ⊂⊂ ET , with
similar local integrability assumptions on f and vt.

Remark 15.2 If we limit ourselves to N = 3, using the Sobolev inequalities,
one can show that a weak solution naturally belongs to Lp,q(ET ;RN ) where
3

p
+

2

q
≥ 3

2
(for a brief discussion of this fact, see [24, Section 1]); hence, there

is a gap between the natural regularity of v and what is assumed in (12.3) in
order to have differentiability in space for v.

Theorem 15.1 is originally due to Serrin ([40]), who developed some of the
methods introduced by [33] few years before. Moreover, he used the stronger
condition

N

p
+

2

q
< 1. (15.2)

The full (12.3) with p > N was proved by [12, 44, 49]; see also [18]. The
limiting case of p = N was dealt with in [49] under a smallness condition;
namely, Struwe assumes that v ∈ LN,∞(ET ;RN ) and that there is a ρ > 0
such that ∫

Bρ∩E
|v(·, t)|N dx ≤ ε (15.3)

uniformly with respect to t in (0, T ) for some absolute constant ε (see also
[44]).

For N = 3, condition (15.3) was fully removed in [8]. The regularity
approach to L3,∞-solutions developed in [8] requires a completely different
method with respect to Serrin’s techniques and further developments, and
the proof is based on the reduction of the regularity problem to a backward
uniqueness problem.

For the sake of simplicity, here we present the original proof of [40], and
therefore, we limit ourselves to (15.2).

At the end of [40], Serrin conjectures that under the same assumptions on
v and f , it should be possible to prove that solutions are analytic in the space
variables. This was indeed proved by Kahane (see [21]).

Let V 2 be the closure of V in W 2,2(E): for N = 2 and N = 3 and the
initial datum vo ∈ V 2, Kiselev and Ladyzhenskaya (see [22]) have proved the
existence of a weak solution of the initial-boundary value problem (8.1) with

v ∈ L4,∞(ET ;RN ), v, ∇v, vt ∈ L2,∞(ET ;RN );

hence, Theorem 15.1 contains as a special case that the Kiselev-Ladyzhenskaya
solution is of class C∞ in the space variable, and is Lipschitz continuous in
time, at least if f is conservative.

Moreover, if N = 2 or N = 3 and the initial data are smooth enough for
the Kiselev-Ladyzhenskaya solution to exist, then by Proposition 14.1, Hopf’s
solution must be the same and consequently has to be of class C∞ in the
space variables.
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Remark 15.3 As pointed out by Serrin in [41, p. 76], for the Kiselev-
Ladyzhenskaya solutions, the case N = 4 can be treated by methods similar
to the ones employed by the authors in [22].

16 Proof of Theorem 15.1 - Introductory Results

In the following, Ωt1,t2 = Ω × (t1, t2) will denote an open set compactly
contained in ET ; moreover, we will frequently deal with convolution integrals
of the type

h(x, t) =

∫∫
Ωt1,t2

k(x− ξ, t− τ)g(ξ, τ) dξdτ,

and we will write h(x, t) = (k ∗ g)(x, t). A first fundamental result is given by

Proposition 16.1 Let k ∈ Lp,p
′
(RN × R;R) and g ∈ Lq,q

′
(Ωt1,t2 ;R) with

N ≥ 1, and
1

p
+

1

q
=

1

r
+ 1,

1

p′
+

1

q′
=

1

r′
+ 1. (16.1)

Then, for the convolution

h(x, t)
def
=

∫∫
Ωt1,t2

k(x− ξ, t− τ)g(ξ, τ) dξdτ, (x, t) ∈ Ωt1,t2 ,

we have
‖h‖r,r′ ≤ ‖k‖p,p′‖g‖q,q′ .

For the proof, we refer to Section 16c of the Complements.
We will take as k = k(x, t) a space derivative of the fundamental solution

Γ of the heat equation
∂u

∂t
− ν∆u = 0. (16.2)

It is usually considered in RN × (0,+∞), and here we extend it to RN × R,
also taking into account a general diffusion coefficient ν > 0, not necessarily
equal to 1; we set

Γ (x, t) =


1

(4πνt)
N
2

exp

(
−|x|

2

4νt

)
t > 0,

0 t ≤ 0.

(16.3)

We have

Lemma 16.1 Let k be a space derivative of the function Γ defined in (16.3).
Then for any g ∈ Lq,q′(Ωt1,t2 ;R), given h = (k ∗ g)(x, t) we have

‖h‖r,r′;Ωt1,t2 ≤ γ‖g‖q,q′;Ωt1,t2 ,

where γ = γ(t2 − t1, ν,N, q, q′, r, r′), provided that 1 ≤ q ≤ r, 1 ≤ q′ ≤ r′, and

N

(
1

q
− 1

r

)
+ 2

(
1

q′
− 1

r′

)
< 1.
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Proof. Since k =
∂Γ

∂xi
with i = 1, . . . , N , we have

|k(x, t)| ≤ γ1t
−N2 −1|x| exp

(
−|x|

2

4νt

)
, (16.4)

where γ1 = γ1(ν,N). Moreover, since both t and τ belong to (t1, t2), taking
into account the definition of Γ , we have

‖k‖p,p′ ≤

(∫ t2−t1

0

(∫
RN
|k|p dx

)p′/p
dt

)1/p′

.

Taking (16.4) into account, we have(∫
RN
|k|p dx

)1/p

=
γ1

t
N
2 +1

(∫
RN
|x|p exp

(
−p |x|

2

4νt

)
dx

)1/p

=
γ2

t
N
2 +1

t
N+p
2p

(∫ +∞

0

sN+p−1 exp(−p
4
s2) ds

)1/p

= γ2t
−α,

where γ2 = γ2(ν,N, p) and α =
N

2

(
1− 1

p

)
+

1

2
. Hence,

‖k‖p,p′ ≤
(∫ t2−t1

0

γp
′

2 t
−αp′ dt

)1/p′

= γ3(t2 − t1)
−α+ 1

p′ ,

provided that αp′ < 1, and where γ3 = γ3(ν,N, p, p′). From (16.1) we have
that

1− 1

p
=

1

q
− 1

r
,

1

p′
=

1

r′
− 1

q′
+ 1;

hence, condition α < 1
p′ can be rewritten as

N

2

(
1

q
− 1

r

)
+

1

2
<

1

r′
− 1

q′
+ 1 ⇒ N

(
1

q
− 1

r

)
+ 2

(
1

q′
− 1

r′

)
< 1.

In the sequel, we will work with ω, the so-called vorticity of the fluid; we have

N = 2 ω = curl v = (0, 0,
∂v2

∂x1
− ∂v1

∂x2
),

N = 3 ω = curl v = (
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2
);

when N > 3, ω is an (N − 2)-skew symmetric tensor, whose components are

ωkl =
∂vk
∂xl
− ∂vl
∂xk

.
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Remark 16.1 In order to streamline the presentation and avoid distinctions
for the values of N , in the following we will always write ω = curl v and on
the other hand, even when N = 2 or N = 3, we will think of ω as a skew
symmetric tensor; for example, for N = 3, we will have

ω =

 0 ∂v1

∂x2
− ∂v2

∂x1

∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2
0 ∂v2

∂x3
− ∂v3

∂x2
∂v3

∂x1
− ∂v1

∂x3

∂v3

∂x2
− ∂v2

∂x3
0

 ,
and similarly for N = 2.

Let A = (A1, A2, . . . , AN ): we define

A ∧ ω = B ≡ (B1, B2, · · · , BN ) ,

where

Bk =

N∑
l=1

Al ωkl =

N∑
l=1

Al

(
∂vk
∂xl
− ∂vl
∂xk

)
. (16.5)

17 Proof of Theorem 15.1 Continued

Let E be a region in RN , N ≥ 2 and Ω ⊂ E an open set such that Ω̄ is
compact in E. Let v ∈ V (i.e. |∇v| ∈ L2(Ω), div v = 0 weakly) and consider
the vorticity ω = curl v, where we take into account the previous definition
and Remark 16.1.

Theorem 17.1. Let y ∈ Ω; then there exists a vector A = A(y), harmonic
in Ω, such that

v(y) =

∫
Ω

∇xH(y − x) ∧ ω(x) dx+A(y),

where H(y − x) is the fundamental solution of the Laplacean in RN centered
at y.

Proof. Let x 7→ u(x) be a C∞o (RN ) scalar function and H(y − x) be the
solution of

−∆H(y − x) = δy (δy Dirac mass at y)

in D′(RN ). Since u ∈ C∞o (RN ), in the sense of distributions we have

〈−∆H(y − x), u〉 = 〈δy, u(x)〉 = u(y) ⇒ u(y) = 〈H(y − x),−∆u(x)〉.

Since −∆u(x) ∈ C∞o (RN ) and H(y − x) is summable,
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u(y) =〈H(y − x),−∆u(x)〉 = −
∫
RN

∆u(x)H(y − x) dx =

=−
∫
Ω

∆u(x)H(y − x) dx−
∫
RN\Ω

∆u(x)H(y − x) dx

=I1 + I2.

Let us start with the computation of I2. Over RN\Ω we have H(y−x) ∈ C∞.
Hence,

−
∫
RN\Ω

∆u(x)H(y − x) dx =

∫
∂Ω

H(y − x)∇u(x) · n dσ

−
∫
RN\Ω

∇u(x) · ∇H(y − x) dx = J1 + J2.

Moreover,

J2 =

∫
∂Ω

u(x)∇H(y − x) · n dσ +

∫
RN\Ω

u(x)∆H(y − x) dx.︸ ︷︷ ︸
=0

Hence,

I2 =

∫
∂Ω

H(y − x)∇u(x) · n dσ +

∫
∂Ω

u(x)∇H(y − x) · n dσ.

Coming to the computation of I1, since u ∈ C∞o (RN ), we have

I1 =−
∫
Ω

∆u(x)H(y − x) dx = −
∫
∂Ω

H(y − x)∇u(x) · n dσ+

+

∫
Ω

∇u(x) · ∇H(y − x) dx.

Finally, summing up

u(y) =

∫
Ω

∇u(x) · ∇H(y − x) dx

+

∫
∂Ω

u(x)∇H(y − x) · n dσ.
(17.1)

Notice that up to now we have assumed u ∈ C∞o . However, a careful inspec-
tion of the proof shows that in (17.1) the only requirement to the existence of
the integrals is u ∈W 1,2(Ω), so that u has L2 trace over ∂Ω, where ∂Ω is as-
sumed smooth. Therefore, by a limiting process and a standard approximation
procedure, we have that for any u ∈W 1,2(Ω)

u(y) =

∫
Ω

∇H(y − x) · ∇u(x) dx+

∫
∂Ω

u(x)∇H(y − x) · n dσ
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for a.e. y ∈ Ω.
Let now v ∈ V with v = (v1, v2, . . . , vN ). For each k = 1, 2, . . . , N and for

a.e. y ∈ Ω

vk(y) =

∫
Ω

∇H(y − x) · ∇vk(x) dx+

∫
∂Ω

vk(x)∇H(y − x) · n dσ.

We rewrite∫
Ω

∇H(y − x) · ∇vk(x) dx =

∫
Ω

N∑
i=1

∂H(y − x)

∂xi

(
∂vk(x)

∂xi
− ∂vi(x)

∂xk

)
dx

+

∫
Ω

N∑
i=1

∂H(y − x)

∂xi

∂vi(x)

∂xk
dx = Σ1 +Σ2.

By (16.5)

Σ1 =

∫
Ω

(∇H(y − x) ∧ curl v(x))k dx =

∫
Ω

(∇H(y − x) ∧ ω(x))k dx,

and

Σ2 =

∫
∂Ω

H(y − x)
∂

∂xk

N∑
i=1

(vi ni)(x) dσ −
∫
Ω

H(y − x)
∂

∂xk

N∑
i=1

∂vi(x)

∂xi
dx.

Since

N∑
i=1

∂vi
∂xi

= div v = 0, we finally conclude that

v(y) =

∫
Ω

∇H(y − x) ∧ ω(x) dx

+

∫
∂Ω

v(x)∇H(y − x) · n dσ −
∫
∂Ω

H(y − x)∇
N∑
i=1

(vi ni)(x) dσ.

The last two integrals represent a harmonic vector A(y) in Ω, since y 6= x ∈
∂Ω in the classical sense.

In the following, mainly for the sake of notational simplicity, we make use of
tensors. For an introduction to these objects, see for example [1].

Definition 17.2. Let k be a N -vector defined in RN ×R and g an M -tensor
defined in Ωt1,t2 . Then the convolution k ∗ g is a (M − 1)-tensor defined in
Ωt1,t2 with components

(k ∗ g)lm =

∫∫
Ωt1,t2

N∑
i=1

ki(x− ξ, t− τ)gilm(ξ, τ) dξdτ.

Moreover, we let

div g
def
=

N∑
i=1

∂gilm
∂xi

.
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We have the following

Proposition 17.1 Assume that v is a local, weak solution of the Navier-
Stokes equations in ET , v ∈ L2,2(ET ;RN ), ω ∈ L2,2(ET ), and that f is
conservative with f ∈ L1,1(ET ;RN ). Then in any Ωt1,t2 ⊂⊂ ET we have

ω = ∇Γ ∗ g + B, (17.2)

where Γ is the function of (16.3), g = (N − 1)ω ∧ v, and B = B(x, t) is a
solution of the heat equation (16.2) in Ωt1,t2 .

Proof. We initially assume that v and ω are both of class C2, in order to
easily perform some of the computations to follow.

First of all, it is a matter of straightforward calculations, to check that in
our case

(v · ∇)v = div(v ⊗ v).

If we now denote by vh = vh(x, t) an integral average of v over a ball in
space-time of radius h centered at (x, t), it follows from (8.2) that there must
exist a regular function ph, such that

∂tvh − ν∆vh = −div(v ⊗ v)h + fh −∇ph. (17.3)

If we take the curl of all the terms in the previous equation, and switch the
derivation order, we obtain

∂tωh − ν∆ωh = − curl div(v ⊗ v)h,

where we have taken into account that curl fh = 0 since f is conservative.
Again, it is a matter of straightforward computations to see that

− curl div(v⊗v)h = div((N − 1) curl v∧v)h = div((N − 1)ω ∧v)h = div gh,

so that we can write
∂tωh − ν∆ωh = div gh. (17.4)

Now, let

Bh
def
= ωh −∇Γ ∗ gh;

we have

∂tBh = ∂tωh − ∂t (∇Γ ∗ gh) = ∂tωh − (∇∂tΓ ) ∗ gh,

ν∆Bh = ν∆ωh − ν∆ (∇Γ ∗ gh) = ν∆ωh − ν (∇∆Γ ) ∗ gh.

Hence, since Γ is the fundamental equation of (16.2), due to (17.4) we conclude
that

∂tBh − ν∆Bh = ∂tωh − ν∆ωh −∇(∂tΓ − ν∆Γ ) ∗ gh

= ∂tωh − ν∆ωh − (∂tΓ − ν∆Γ ) ∗ div gh

= ∂tωh − ν∆ωh − div gh

= 0.

As Bh is in L1,1(ET ;RN ) uniformly with respect to h, we can then pass to
the limit as h → 0 and conclude. If v and ω are not in C2, the previous
computations can be concluded by standard limiting arguments.
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As a consequence of Proposition 17.1, in any Ωt1,t2 ⊂⊂ ET , we can write

ω = ∇Γ ∗ g + B,

where g = (N − 1)ω ∧ v. Hence, |g| ≤ γ|ω||v|, where γ depends only on N .
We first prove that in any Ωt1,t2 ⊂⊂ ET we have ω ∈ L∞(Ωt1,t2). If v ∈

Lp,q(ET ;RN ) and ω ∈ Lr,s(ET ), then, by Hölder’s inequality, g ∈ Lρ,σ(ET ),
where ρ, σ ≥ 1 are given by

1

ρ
=

1

p
+

1

r
,

1

σ
=

1

q
+

1

s
.

We define the positive constant κ ∈ (0, 1) by

(N + 3)κ = 1−
(
N

p
+

2

q

)
,

and also
% =

r

1− κr
, ς =

s

1− κs
,

where % =∞ if κr ≥ 1, and analogously ς =∞ if κs ≥ 1. It is straightforward
to check that

1 ≤ ρ ≤ %, 1 ≤ σ ≤ ς, N

(
1

ρ
− 1

%

)
+ 2

(
1

σ
− 1

ς

)
= 1− κ < 1.

By Lemma 16.1 and Proposition 17.1, we conclude that ω ∈ L%,ς(ET ), where
%, ς are larger than r, s, so that ω actually enjoys a higher integrability with
respect to what originally assumed. The process can be repeated an arbitrary
number of times, beginning with r = s = 2. After a finite number of steps,
one has ω ∈ L%,ς(ET ) with % = ς ≥ κ−1; at the next step % = ς =∞, and we
have finished the first part of the proof.

By Theorem 17.1, we now have

v(y, t) =

∫
Ω

∇xH(y − x) ∧ ω(x, t) dx+A(y, t), (18.1)

where v ∈ L2,∞(Ωt1,t2 ;RN ), and we have just proven that ω ∈ L∞(Ωt1,t2).
Hence, the function A = A(x, t) must be bounded on compact subsets of
Ω, both as a function of x and of t, and consequently, v ∈ L∞(Ωt1,t2 ;RN ).
By the usual potential theoretic estimates for heat kernel convolutions (see
for example [53]), ω is Hölder continuous with respect to the space variables
in any compact subregion of ET , with arbitrary exponent α ∈ (0, 1). By the
Hölder continuity of ω and (18.1), we have that also v is Hölder continuous.

This yields that g is Hölder continuous, and by the same potential theoretic
estimates for the heat kernel convolution we have just relied upon, we have
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that ∇ω is Hölder continuous. From here on, we can bootstrap, and conclude
that v ∈ C∞ with respect to the space variables.

Up to now, we have not used yet that vt ∈ L2,s with s ≥ 1. It is rather
straightforward to show that (17.2) implies

∂tω − ν∆ω = div g. (18.2)

In turn this yields that ∂tω is of class C∞ in the space variables, and its
derivatives are bounded on compact subsets of ET . On the other hand, if we
differentiate (18.1) with respect to time, we have

vt(y, t) =

∫
Ω

∇xH(y − x) ∧ ωt(x, t) dx+At(y, t).

Thus, vt is of class C∞ in the space variables, and each derivative is of class
Ls in time. Finally, we recover that equation (15.1) holds almost everywhere
in ET , by letting h→ 0 in (17.3).

19 Regularity of the Initial-Boundary Value Problem

As we have already discussed in Section 15, solutions of the Navier-Stokes
equations behave globally with respect to time, as they are instantaneously
determined by the boundary conditions, but they are somehow purely local
as far as the space variables are concerned. This suggests that one can hope
to gain time regularity from the assigned initial-boundary value problem. We
will not go into details here, and we limit to state a result, whose proof can
be found in [17, § 5].

Theorem 19.1. Let v be a weak solution in ET of the initial-boundary value
problem (8.1) with f ≡ 0 and vo ∈ H. Assume that v satisfies at least one of
the following two conditions:

(i) v ∈ Lp,q
(
ET ;RN

)
, for some p, q such that N

p + 2
q = 1, p ∈ (N,∞];

(ii) v ∈ C0
(
[0, T ];LN (E)

)
.

Then, if E is uniformly of class C∞, we have v ∈ C∞(Ē × (0, T ]).

Remark 19.1 For E = R3, Theorem 19.1 was first proved by Leray [27, pp.
224-227], while for E = RN with N ≥ 2, and p < ∞ it is due to [12]. Sohr
proved Theorem 19.1(i) with p < ∞, for domains with a bounded boundary
in [43]. That condition (ii) implies regularity was first discovered by von Wahl
([52]), in the case of a bounded domain. This latter result was extended to
domains with a bounded boundary by Giga ([18]).
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20 Recovering the Pressure in the Time-Dependent
Equations

In Section 12 we have shown how a moderate degree of integrability of ∇p
yields a higher regularity on v. We return to this issue and discuss the regular-
ity of p when considering weak solutions of (8.1) for N = 3. Instead of dealing
with a general domain ET , just for simplicity we work with B1 × (−1, 0).
Moreover, we take ν = 1. We will prove the following.

Proposition 20.1 (Sohr–von Wahl [45]) Let vo ∈ L2
(
B1;R3

)
be weakly

divergence free in B1 and f ≡ 0. If v is the corresponding weak solution of

(8.1) in B1 × (−1, 0), then p ∈ L 5
3

(
−1, 0;L

5
3 (B1)

)
.

Proof. If we rely on (12.1) written over B1 with p = 15
14 and pq = 2, we have

‖(v · ∇)v‖
5
3
15
14 ;B1

≤
(∫

B1

|∇v|2 dx
) 5

6
(∫

B1

|v| 30
13

) 13
18

≤ C
[
‖∇v‖22;B1

+ ‖v‖10
30
13 ;B1

]
.

(20.1)

Now we rely on the following interpolation inequality, which can be proven,
for example, relying on Proposition 18.1 and Theorem 19.1 of Chapter IX of
[6].

Lemma 20.1 Let r > 0. For v ∈W 1,2 (Br) we have∫
Br

|v|q dx ≤C
[∫

Br

|∇v|2 dx
]a [∫

Br

|v|2 dx
] q

2−a

+
C

r2a

[∫
Br

|v|2 dx
] q

2

for all q ∈ [2, 6], a = 3(q−2)
4 .

If we choose q = 30
13 and a = 3

13 in Lemma 20.1, we obtain

‖v‖ 30
13 ;B1

≤ C‖∇v‖
1
5

2;B1
‖v‖

4
5

2;B1
+ C‖v‖2;B1

and also,
‖v‖10

30
13 ;B1

≤ C‖∇v‖22;B1
‖v‖82;B1

+ C‖v‖10
2;B1

. (20.2)

If we take both (20.1) and (20.2) into account, we conclude that

‖(v · ∇)v‖
5
3
15
14 ;B1

≤ C
[
‖∇v‖22;B1

+ ‖∇v‖22;B1
‖v‖82;B1

+ ‖v‖10
2;B1

]
,

and integrating with respect to time over (−1, 0) yields
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−1

(∫
B1

|(v · ∇)v| 15
14 dx

) 14
15 ·

5
3

dt

≤C
∫ 0

−1

∫
B1

|∇v|2 dxdt

+ C

∫ 0

−1

(∫
B1

|∇v|2 dx
)(∫

B1

|v|2 dx
)4

dt

+ C

∫ 0

−1

(∫
B1

|v|2 dx
)5

dt,

where all the terms on the right-hand side are bounded, since v ∈W . Hence,
we conclude that

(v · ∇)v ∈ L 5
3

(
−1, 0;L

15
14 (B1)

)
. (20.3)

Take ϕ ∈ V, where in (8.2) we assume E = B1. If we use such a ϕ in the
weak formulation of Navier-Stokes equations, we obtain(

∂v

∂t
,ϕ

)
= −(∇v,∇ϕ)− ((v · ∇)v,ϕ)∣∣∣∣(∂v

∂t
,ϕ

)∣∣∣∣ = |−(∇v,∇ϕ)− ((v · ∇)v,ϕ)|

≤ ‖∇v(·, t)‖2;B1
‖∇ϕ‖2;B1

+ ‖v(·, t)‖2;B1
‖∇v(·, t)‖2;B1

‖ϕ‖2;B1

≤
[
‖∇v(·, t)‖2;B1

+ ‖v(·, t)‖2;B1
‖∇v(·, t)‖2;B1

]
‖ϕ‖W 2,2(B1).

Hence,
∂v

∂t
−∆v ∈ L2(−1, 0;Z)

where Z is the dual space of W 2,2
0 (B1). We define

g =
∂v

∂t
−∆v,

and notice that for almost every t ∈ (−1, 0),

div g =
∂

∂t
(div v)−∆(div v) = 0, curl g = curl((v · ∇)v) in B1.

Then, by the elliptic estimates of [32], Chapter 7,

‖g‖
5
3
15
14 ,B1

≤ C
[
‖(v · ∇)v‖

5
3
15
14 ,B1

+ ‖g‖
5
3

Z

]
.

Therefore, integrating we have

∂v

∂t
−∆v ∈ L 5

3

(
−1, 0;L

15
14 (B1)

)
; (20.4)
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(20.3)–(20.4) imply that

∇p ∈ L 5
3

(
−1, 0;L

15
14 (B1)

)
and by the Sobolev embedding theorem, we conclude that

p ∈ L 5
3

(
−1, 0;L

5
3 (B1)

)
.

Remark 20.1 The proof of Proposition 20.1 is taken from [29].

21 How the Quantities Scale in the Equations

Concerning the quantities in the Navier-Stokes equations, if we rewrite

vt − ν∆v + (v · ∇)v +∇p = f

taking into account only the physical dimensions, we have

[v]

[T ]
− [v]

[L]2
+

[v]2

[L]
+

[p]

[L]
= [f ].

This easily yields
dim [L] = 1,

dim [T ] = 2,

[v]

[L]
= [v]2 ⇒ dim [v] = −1,

[p] = [v]2 ⇒ dim [p] = −2,

[f ] =
[p]

[L]
⇒ dim [f ] = −3.

This will be very useful in the next Sections.

22 The Generalized or Localized Energy Inequality

In the following we work with homogeneous Navier-Stokes equations, that is,
we take f = 0. Moreover, for the sake of simplicity, we assume ν = 1 (there is
no loss of generality in this assumption, as we have pointed out before more
than once).

We have already discussed the notion of weak solution in the sense of
Leray-Hopf. At this stage, it is perhaps useful to recall how the initial condition
vo ∈ L2(E) is assumed: we have

lim
t→0
‖v(·, t)− vo‖L2(E) = 0.
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Since in the following we want to develop a local regularity theory, instead
of the global energy inequality typical of Leray-Hopf’s solutions, we need a
localized version.

As typical when introducing weak notions of solutions, we first assume
(v, p) to be regular, we deduce the corresponding inequality, and then we take
it as a definition.

Consider a non-negative function ϕ ∈ C∞o (E × (0, T );R), multiply the
equation by ϕv, and integrate. We have∫ T

0

∫
E

vt · (ϕv) dxdt+

∫ T

0

∫
E

∇v : ∇(ϕv) dxdt

+

∫ T

0

∫
E

(ϕv) · (v · ∇)v dxdt+

∫ t

0

∫
E

∇p · (ϕv) dxdt

= I1 + I2 + I3 + I4 = 0.

Notice that we are not requiring that divϕ = 0. We consider all the terms
one by one.

I1 =

∫ T

0

∫
E

vt · (ϕv) dxdt =
1

2

∫ T

0

∫
E

ϕ∂t|v|2 dxdt

=
���������1

2

∫
E×{T}

|v|2ϕdx −
��������1

2

∫
E×{0}

|v|2ϕdx

− 1

2

∫ T

0

∫
E

|v|2∂tϕdxdt.

The first two terms cancel because of the definition of ϕ. Since

∇(ϕv) = ϕ∇v + v∇ϕ,

we have

I2 =

∫ T

0

∫
E

∇v : ∇(ϕv) dxdt =

∫ T

0

∫
E

ϕ|∇v|2 dxdt

+

∫ T

0

∫
E

∇v : (v∇ϕ) dxdt =

∫ T

0

∫
E

ϕ|∇v|2 dxdt

+
1

2

∫ T

0

∫
E

∇|v|2 · ∇ϕdxdt

=

∫ T

0

∫
E

ϕ|∇v|2 dxdt− 1

2

∫ T

0

∫
E

|v|2∆ϕdxdt;

I4 =

∫ T

0

∫
E

∇p · (ϕv) dxdt = −
∫ T

0

∫
E

p div(ϕv) dxdt

=
����������

−
∫ T

0

∫
E

p div v dxdt −
∫ T

0

∫
E

pv · ∇ϕdxdt.



22 Partial Regularity of Navier-Stokes Equations 63

Finally

I3 =

∫ T

0

∫
E

(ϕv) · (v · ∇)v dxdt = −1

2

∫ T

0

∫
E

|v|2v · ∇ϕdxdt.

The result is a consequence of the following fact. By sheer computations, we
have

(ϕv) · (v · ∇)v

= (ϕv1, ϕv2, . . . , ϕvN ) · [v1∂x1 + · · ·+ vN∂xN ] (v1, . . . , vN )

=ϕv1 [v1∂x1v1 + v2∂x2v1 + · · ·+ vN∂xN v1]

+ . . .

+ ϕvN [v1∂x1vN + v2∂x2vN + · · ·+ vN∂xN vN ]

=ϕv1

[
∂x1

1

2
v2

1 + v2∂x2
v1 + · · ·+ vN∂xN v1

]
+ ϕv2

[
v1∂x1v2 + ∂x2

1

2
v2

2 + · · ·+ vN∂xN v2

]
+ . . .

+ ϕvN

[
v1∂x1

vN + v2∂x2
vN + · · ·+ 1

2
∂xN v

2
N

]
=ϕ

[
v1∂x1

1

2
v2

1 + v2∂x2

1

2
v2

1 + · · ·+ vN∂xN
1

2
v2

1

]
+ ϕ

[
v1∂x1

1

2
v2

2 + v2∂x2

1

2
v2

2 + · · ·+ v2∂xN
1

2
v2
N

]
+ . . .

+ ϕ

[
v1∂x1

1

2
v2
N + v2∂x2

1

2
v2
N + · · ·+ vN∂xN

1

2
v2
N

]
=ϕv1∂x1

1

2
|v|2 + ϕv2∂x2

1

2
|v|2 + · · ·+ ϕvN∂xN

1

2
|v|2 = ϕv · ∇1

2
|v|2.

Hence, if we take into account that we are integrating with respect to space
and time, relying on the previous computations we have∫ T

0

∫
E

(ϕv) · (v · ∇)v dxdt

=

∫ T

0

∫
E

ϕv · ∇1

2
|v|2 dxdt = −

∫ T

0

∫
E

1

2
|v|2 div(ϕv) dxdt

=
������������

−
∫ T

0

∫
E

1

2
|v|2ϕdiv v dxdt −

∫ T

0

∫
E

1

2
|v|2v · ∇ϕdxdt.

Eventually, if we collect all the terms, we have
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0

∫
E

|∇v|2ϕdxdt =
1

2

∫ T

0

∫
E

|v|2 (∂tϕ+∆ϕ) dxdt

+
1

2

∫ T

0

∫
E

|v|2v · ∇ϕdxdt+

∫ T

0

∫
E

pv · ∇ϕdxdt

or equivalently

2

∫ T

0

∫
E

|∇v|2ϕdxdt =

∫ T

0

∫
E

|v|2 (∂tϕ+∆ϕ) dxdt

+

∫ T

0

∫
E

(
|v|2 + 2p

)
v · ∇ϕdxdt.

We say that a weak solution (v, p) satisfies the generalized (or localized) energy
inequality if

2

∫ T

0

∫
E

|∇v|2ϕdxdt ≤
∫ T

0

∫
E

|v|2(∂tϕ+∆ϕ) dxdt

+

∫ T

0

∫
E

(
|v|2 + 2p

)
v · ∇ϕdxdt

for all non-negative ϕ ∈ C∞o (E × (0, T );R). We will say something about
the summability of v in a while. We mentioned before the weak continuity in
L2(E) of v(·, t); this means that ∀ψ ∈ L2(E), we have∫

E

v(·, t)ψ dx →
∫
E

v(·, to)ψ dx

as t→ to ∈ [0, T ]. As a consequence of this, the generalized energy inequality
can be further localized with respect to time; indeed, ∀ t ∈ (0, T ), ∀ϕ ∈
C∞0 (E × (0, T );R), ϕ ≥ 0∫

E×{t}
|v|2ϕdx+ 2

∫ t

0

∫
E

|∇v|2ϕdxdτ

≤
∫ t

0

∫
E

|v|2 (∂τϕ+∆ϕ) dxdτ +

∫ t

0

∫
E

(
|v|2 + 2p

)
v · ∇ϕdxdτ.

(22.1)

23 An Introductory Estimate

In the sequel we will need the following introductory result.

Lemma 23.1 Let v ∈ L∞(0, T ;L2(E)) ∩ L2(0, T ;W 1,2(E)), (xo, to) ∈ ET ,
assume that Bρ(xo)× (to − ρ2, to] ⊂ ET , and for 0 < r ≤ ρ let

A(r)
def
= sup

to−r2<t<to

1

r

∫
Br(xo)

|v(·, t)|2 dx
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B(r)
def
=

1

r

∫ to

to−r2

∫
Bρ(xo)

|∇v|2 dxdt,

C(r)
def
=

1

r2

∫ to

to−r2

∫
Bρ(xo)

|v|3 dxdt.

Then

C(r) ≤ γ

[(
r

ρ

)3

[A(ρ)]
3
2 +

(ρ
r

)3

[A(ρ)]
3
4 [B(ρ)]

3
4

]
, (23.1)

where γ depends only on the dimension N = 3.

Proof. Without loss of generality, we may assume (xo, to) = (0, 0). We let

Br = {|x| < r}, Qr = Br × (−r2, 0],

and

|v̄ρ|2 =

∫
Bρ

|v|2 dx;

for a.e t ∈ (−r2, 0] we have∫
Br

|v(·, t)|2 dx =

∫
Br

[
|v|2 − |v̄ρ|2 + |v̄ρ|2

]
dx

≤
∫
Bρ

∣∣|v|2 − |v̄ρ|2∣∣ dx+

∫
Br

|v̄ρ|2 dx

≤ c1ρ
∫
Bρ

∣∣∇|v|2∣∣ dx+
c2
ρN

(∫
Bρ

|v|2 dx

)
rN

≤ c3ρ
∫
Bρ

|v||∇v| dx+ c2
rN

ρN

(∫
Bρ

|v|2 dx

)

= c3ρ

∫
Bρ

|v||∇v| dx+ c2

(
r

ρ

)N ∫
Bρ

|v|2 dx.

Thus, we can conclude that∫
Br

|v|2 dx ≤c3ρ
3
2

[
1

ρ

∫
Bρ

|v|2 dx

] 1
2
[∫

Bρ

|∇v|2 dx

] 1
2

+ c2

(
r

ρ

)N ∫
Bρ

|v|2 dx

≤c3ρ
3
2 [A(ρ)]

1
2

[∫
Bρ

|∇v|2 dx

] 1
2

+ c2ρ

(
r

ρ

)N
A(ρ).

(23.2)

We now let N = 3. If we take into account Lemma 20.1 and we choose q = 3,
a = 3

4 we get
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Br

|v|3 dx ≤ γ
[∫

Br

|v|2 dx
] 3

4
[∫

Br

|∇v|2 dx
] 3

4

+
γ

r
3
2

[∫
Br

|v|2 dx
] 3

2

. (23.3)

Combining (23.2) and (23.3) yields∫
Br

|v|3 dx ≤c
[∫

Br

|v|2 dx
] 3

4
[∫

Br

|∇v|2 dx
] 3

4

+
c

r
3
2

[
ρ

3
2 [A(ρ)]

1
2

[∫
Br

|∇v|2 dx
] 1

2

+ ρ

(
r

ρ

)3

A(ρ)

] 3
2

≤cρ 3
4 [A(ρ)]

3
4

[∫
Bρ

|∇v|2 dx

] 3
4

+ c
ρ

3
4

r
3
2

[A(ρ)]
3
4

[∫
Bρ

|∇v|2 dx

] 3
4

+
c

r
3
2

ρ
3
2

(
r

ρ

) 9
2

[A(ρ)]
3
2

=c

(
r

ρ

)3

[A(ρ)]
3
2 + c

[
ρ

3
4 +

ρ
9
4

r
3
2

]
[A(ρ)]

3
4

[∫
Bρ

|∇v|2 dx

] 3
4

.

Now we integrate over t in the interval (−r2, 0] to obtain∫ 0

−r2

∫
Br

|v|3 dxdt ≤c
(
r

ρ

)3

[A(ρ)]
3
2 r2

+ c

[
ρ

3
4 +

ρ
9
4

r
3
2

]
[A(ρ)]

3
4

∫ 0

−ρ2

[∫
Bρ

|∇v|2 dx

] 3
4

dt

≤cr2

(
r

ρ

)3

[A(ρ)]
3
2 +

+ c

(
ρ

3
4 +

ρ
9
4

r
3
2

)
[A(ρ)]

3
4 r

1
2

[∫ 0

−ρ2

∫
Bρ

|∇v|2 dxdt

] 3
4

,

where we have applied the Hölder inequality (with respect to time) in order
to estimate the last term. If we divide everything by r2, we have

1

r2

∫ 0

−r2

∫
Br

|v|3 dxdt ≤ c
(
r

ρ

)3

[A(ρ)]
3
2

+
c

r
3
2

(
ρ

3
4 +

ρ
9
4

r
3
2

)
[A(ρ)]

3
4 ρ

3
4

(
1

ρ

∫ 0

−ρ2

∫
Bρ

|∇v|2 dxdt

) 3
4

,

that is

C(r) ≤c
(
r

ρ

)3

[A(ρ)]
3
2 + c

(
ρ

3
2

r
3
2

+
ρ3

r3

)
[A(ρ)]

3
4 [B(ρ)]

3
4 ,
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which finally yields

C(r) ≤ c
(
r

ρ

)3

[A(ρ)]3/2 + c
(ρ
r

)3

[A(ρ)]3/4[B(ρ)]3/4.

Remark 23.1 Estimate (23.1) is simply a Real Analysis fact, and does not
depend on v being a solution of the Navier-Stokes equations.

24 Suitable Weak Solutions and Partial Regularity

In their paper (see [3]) Caffarelli, Kohn & Nirenberg introduce the notion of
suitable weak solution, which we are going to define next.

Definition 24.1. A pair (v, p) is a suitable weak solution of the Navier-Stokes
equations in an open set D ⊂ R3 × R if the following conditions hold:

1. (v, p) satisfies the Navier-Stokes equations in the sense of distributions in
D [which is a much weaker assumption, with respect to what we usually
require];

2. p ∈ L
3
2 (D) with

∫∫
D
|p| 32 dxdt < E and for some constants Eo, E1 we

have∫
Dt

|v|2 dx ≤ Eo, Dt = D ∩
(
R3 × {t}

)
for a.e t such that Dt 6= ∅,∫∫

D

|∇v|2 dxdt ≤ E1.

3. The generalized energy inequality (22.1) holds ∀ϕ ∈ C∞o (D;R+).

Remark 24.1 With respect to the usual way of proceeding, now we have
the extra condition about the pressure. A priori, it is hard to say whether
solutions built by Leray and Hopf have the right summability as required
here. However, as we have seen, p ∈ L

5
3 (Q1) and this allows us to prove a

suitable compactness result

Before coming to such a result, let us make few quick comments about the
notion of suitable weak solution.

Remark 24.2 If we take the interpolation inequality of Lemma 20.1 in Br×
(0, T ] with q = 10/3 (which yields a = 1), we have
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0

∫
Br

|v| 10
3 dxdt ≤C

∫ T

0

[∫
Br

|v|2 dx
] 2

3
[∫

Br

|∇v|2 dx
]
dt

+
C

r2

∫ T

0

(∫
Br

|v|2 dx
) 5

3

dt

≤C
(

sup
0<t<T

∫
Br

|v|2 dx
) 2

3
∫ T

0

∫
Br

|∇v|2 dxdt

+
C

r2

(
sup

0<t<T

∫
Br

|v|2 dx
) 5

3
∫ T

0

dt

=CE
2
3
o E1 +

C

r2
E

5
3
o T.

In particular, this yields that

∫ T

0

∫
Br

|v|2v ·∇ϕdxdt is well-defined. We have

already somehow seen this fact when we introduced the notion of weak solu-
tion, that is, when in Lemma 8.1 we showed that v ∈W implies v ∈ L 10

3 (ET ).
Here we have just given a different proof, where the bounds are more clearly
pointed out.

Scheffer was the first one to study local regularity for the Navier-Stokes equa-
tions. His result states that

Theorem 24.2 ([36]). For f = 0, there exists a weak solution of the Navier-
Stokes equations, whose singular set S satisfies

H 5
3 (S) < +∞, H1(S ∩ (E × {t})) <∞ uniformly in t,

where Hk is the Hausdorff k-dimensional measure.

Caffarelli, Kohn & Nirenberg improved the previous result in this way.

Theorem 24.3 ([3]). For any suitable weak solution of the Navier-Stokes
equations on an open set in space-time, the associated singular set S satisfies

P1(S) = 0,

where P1 is the parabolic 1-dimensional Hausdorff measure.

Such a quantity is analogous but finer than the euclidean 1-dimensional Haus-
dorff measure. In the sequel, we will explain what we mean by this.

Theorem 24.2 is essentially a consequence of the following.

Proposition 24.1 There are absolute constants ε1 ∈ (0, 1) and c1 > 0 such

that if (v, p) is a suitable weak solution in some cylinder Qr
def
= Br(xo)×(to−

r2, to] and

1

r2

∫∫
Qr

[|v|3 + |v||p|] dxdt+
1

r
13
4

∫ to

to−r2

(∫
Br(xo)

|p| dx

) 5
4

dt ≤ ε1,
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then
|v(x, t)| ≤ c1

r
in Q r

2
.

Hence, in particular, v is regular.

The Scheffer estimate about the Hausdorff dimension of the singular set comes
as a consequence of a covering argument based on negating the main assump-
tion in Proposition 24.1. We will discuss this fact later on.

Theorem 24.3 is essentially a consequence of the following.

Proposition 24.2 There is an absolute constant ε2 ∈ (0, 1) such that if (v, p)

is a suitable weak solution in some cylinder Qr
def
= Br(xo)× (to − r2, to] and

lim sup
r→0

1

r

∫∫
Qr

|∇v|2 dxdt ≤ ε2,

the |v| is limited.

Again, the estimate on the Hausdorff parabolic dimension of the singular
set follows from a proper covering argument based on negating the previous
assumption.

25 A Compactness Result for Suitable Weak Solutions

We can finally come to the compactness result we mentioned before.

Theorem 25.1. Let {(vn, pn)} be a sequence of weak solutions (in the sense

of Leray-Hopf) of the Navier-Stokes equations in Q1
def
= B1 × (−1, 0], such

that for some constants E, Eo, E1 we have∫
B1×{t}

|vn|2 dx ≤ Eo for a.e. t ∈ (−1, 0],∫∫
Q1

|∇vn|2 dxdt ≤ E1,∫∫
Q1

|pn|
3
2 dxdt ≤ E,

and the pair (vn, pn) satisfies the generalized energy inequality (22.1) for all
n. Assume that

vn ⇀ v weakly in L2(−1, 0;V ),

vn ⇀ v weakly∗ in L∞(−1, 0;H),

pn ⇀ p weakly in L
3
2 (Q1).

Then (v, p) is a suitable weak solution in Q1.
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Remark 25.1 The crucial point for the sequence {(vn, pn)} is that each pair
(vn, pn) satisfies the generalized energy inequality.

Under this point of view, we have the following result (for the proof, we refer
to [3, Appendix]).

Theorem 25.2. Suppose E is a bounded, open, connected set in R3, locally
lying on one side of its boundary, and that ∂E is a smooth manifold. Suppose
that f ∈ L2(ET ) and div f = 0 (in the weak sense). Finally, assume that

vo ∈ H ∩W
2
5 ,

5
4 (E). Then there exists a weak solution (v, p) of (8.1) in ET

satisfying

1. v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H);
2. v(·, t) ⇀ vo weakly in H as t→ 0;

3. p ∈ L 5
3 (ET );

4. For any ϕ ∈ C∞o (ET ), ϕ ≥ 0, v satisfies (22.1), where we have the extra

term 2

∫ t

0

∫
E

f · v dxdt on the right-hand side.

Remark 25.2 Notice that 1.–3. say that (v, p) is a weak solution in the sense
of Leray-Hopf, and 4. further specifies that it is a suitable weak solution. On
the other hand, we are not saying that all weak solutions are suitable weak
solutions, but only that there exists (at least) one suitable weak solution.

Now we prove Theorem 25.1.

Proof. We recall that

vn ⇀ v weakly in L2(−1, 0;V ),

vn ⇀ v weakly∗ in L∞(−1, 0;H),

pn ⇀ p weakly in L
3
2 (Q1).

It is enough to prove that ∀ q ∈ [1, 10
3 ) vn → v strongly in Lq(Q1). Indeed, in

such a case, for any smooth ϕ ≥ 0, by Fatou’s Lemma we have

2 lim inf
n→∞

∫∫
Q1

|∇vn|2ϕdxdt ≥ 2

∫∫
Q1

|∇v|2ϕdxdt.

Moreover, by the strong convergence of vn → v in L3(Q1) and the weak

convergence of pn → p in L
3
2 (Q1), we conclude about the convergence of the

right-hand side of the generalized energy inequality.
In order to show the strong convergence in Lq(Q1), we first prove a proper

weak uniform continuity of vn as a function of time. This is done in the same
spirit of what we have done in the proof of Proposition 20.1. As before, we let

Z
def
= (W 2,2

0 (E))′. By

∂tvn −∆vn + (vn · ∇)vn +∇pn = 0 weakly inQ1
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and by the weak convergences of vn to v and pn to p, we can conclude that

∂tvn ∈ L
3
2 (−1, 0;Z), ‖∂tvn‖

L
3
2 (−1,0;Z)

≤ co,

for some constant co which depends on

sup
n

[
‖vn‖L2(−1,0;V ) + ‖vn‖L∞(−1,0;H) + ‖pn‖

L
3
2 (Q1)

]
.

This allows us to conclude that vn ∈ Co([−1, 0];Z), and also that they are
uniformly continuous as functions of t ∈ [−1, 0] with values in Z. By an
abstract result (see [50, Chapter III, Theorem 2.1]), we can conclude that all

vn stay in a compact subset of L
3
2 (Q1). Hence, vn → v strongly in L

3
2 (Q1).

Finally, since all vn are bounded in L
10
3 (Q1), we deduce that vn → v strongly

in Lq(Q1) for all q ∈ [1, 10
3 ).

26 The Partial Regularity Revisited

We give a thorough presentation of the partial regularity theory for Navier-
Stokes equations. We restate Theorems 24.2–24.3 as done in [29].

Theorem 26.1. Let (v, p) be a suitable weak solution of the Navier-Stokes
equations in Q1. There exist two positive constants εo and co, such that, if∫∫

Q1

[
|v|3 + |p| 32

]
dxdt ≤ εo, (26.1)

then v is bounded; in particular, v is α-Hölder continuous in Qr for some
α ∈ (0, 1) and any r ∈ (0, 1

2 ), and ‖v(x, t)‖Cα(Qr) ≤ co.

Remark 26.1 At a first reading, it might seem odd, that we jump from
boundedness to Hölder continuity, both is space and in time. However, as
we know from Theorem 15.1, from the local boundedness of v one concludes
higher regularity in the space variables (here f = 0, hence we do not require
extra regularity assumptions on it). As pointed out in [3], the effect of the
pressure prevents one from proving such a local higher regularity result in the
time variable. However, if v is absolutely continuous in time, and vt ∈ Lqloc(D),
q > 1, then the same is true of the space derivatives of vt on compact subsets
of D.

Remark 26.2 By the scaling properties discussed in Section 21, (26.1) can
be equivalently rewritten as

1

r2

∫∫
Qr

[
|v|3 + |p| 32

]
dxdt ≤ εo.

We omit the proof of Theorem 26.1, even though we will rely on it. The
interested reader can refer to [29, Theorem 3.1].
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Theorem 26.2. Let (v, p) be a suitable weak solution of the Navier-Stokes
equations in Q1. There exists a positive constants ε1, such that, if

lim sup
r→0

1

r

∫∫
Qr

|∇v|2 dxdt ≤ ε1, (26.2)

then there exist θo, ro ∈ (0, 1) and 0 < ε2 << 1, such that either

[A(θor)]
3
2 + [D(θor)]

2 ≤ 1

2

(
[A(r)]

3
2 + [D(r)]2

)
, (26.3)

or
[A(r)]

3
2 + [D(r)]2 ≤ ε2 << 1, (26.4)

where 0 < r < ro, and

D(r)
def
=

1

r2

∫∫
Qr

|p| 32 dxdt. (26.5)

In the next Sections we proceed in the following way. First, we prove that
Theorem 26.2 implies the regularity of v; then we show how negating the
main assumption of Theorem 26.2 we obtain an estimate on the Hausdorff
parabolic dimension of the singular set S. Finally, we give the full proof of
Theorem 26.2.

27 Theorem 26.2 implies the Regularity of v

Let us first suppose that (26.4) holds true. By the interpolation inequality of
Lemma 20.1 with q = 10

3 , we have∫∫
Qr

|v| 10
3 dxdt ≤Cr 5

3

[(
1

r
sup

−r2<t<0

∫
Br

|v|2 dxdt
) 2

3
(

1

r

∫∫
Qr

|∇v|2 dxdt
)

+

(
1

r
sup

−r2<t<0

∫
Br

|v|2 dx
) 5

3

]
=Cr

5
3

[
[A(r)]

2
3B(r) + [A(r)]

5
3

]
.

Hence, by (26.2) and (26.4), provided ro is sufficiently small, we have∫∫
Qr

|v| 10
3 dxdt ≤ Cr 5

3

(
ε

4
9
2 ε1 + ε

10
9

2

)
= Cr

5
3 ε̃,

where we have set ε̃ = ε
4
9
2 ε1 + ε

10
9

2 . By a straightforward application of the
Hölder inequality,

1

r2

∫∫
Qr

|v|3 dxdt ≤ 1

r
3
2

[∫∫
Qr

|v| 10
3 dxdt

] 9
10

≤ Cε̃.
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By a possible reduction of ε1 and ε2, we conclude that

1

r2

[∫
Qr

|v|3 dxdt+

∫∫
Qr

|p| 32 dxdt
]
≤ εo,

and Remark 26.2 and Theorem 26.1 yield that v is regular.
On the other hand, if (26.3) holds true, iterating it we obtain that there

exists no ∈ N such that

[A(θnoo r)]
3
2 + [D(θnoo r)] ≤ 1

2no
≤ ε2,

and repeating the previous argument, we again conclude that v is regular.

Remark 27.1 A similar argument is discussed in [30].

28 An Estimate of the Hausdorff Parabolic Dimension of
the Singular Set

We define the Hausdorff parabolic measure. As above, we let Qr denote the
cylinder with radius r and height r2. At this stage the upper vertex of the
cylinder plays no role.

For any given set X ⊂ R3 × R and k ≥ 0, we define

Pk = lim
δ→0+

Pkδ (X),

where

Pkδ (x) = inf

{ ∞∑
i=1

rki : X ⊂
∞⋃
i=1

Qri , ri < δ

}
.

It is rather easy to see that Pk is an outer measure, for which all Borel sets
are measurable; on its σ-algebra of measurable sets, Pk is a Borel regular
measure (we refrain from going into details here).

The Hausdorff measure Hk is defined in an entirely similar manner, but
with Qri replaced by an arbitrary closed set of R3 × R of diameter at most
ri. Typically, one would use balls. Moreover, one usually normalizes Hk for
an integer k, so that it agrees with the surface area on smooth k-dimensional
surfaces.

It is not hard to see that Hk ≤ c(k)Pk.
What we really need is a simple fact: for any X ⊂ R3 × R, Pk(X) = 0 if

and only if, for each δ > 0, the set X can be covered by a family of parabolic

cylinders {Qri}∞i=1 such that

∞∑
i=1

rki < δ.

We also need the following (parabolic) version of Vitali’s covering Lemma.
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Lemma 28.1 Let F be any family of parabolic cylinders Qr(x, t) contained
in a bounded set of R3 × R. Then there exists a finite or countable subfamily
F ′ = {Qi = Qri(xi, ti)} such that

1. Qi ∩Qj = ∅ for i 6= j;
2. ∀Q ∈ F ∃Qri(xi, ti) ∈ F ′ such that Q ⊂ Q5ri(xi, ti).

We omit the proof. The interested reader can refer to [3, Lemma 6.1]. It is
important to remark that

sup
Q∈F

r(Q) <∞,

since we are assuming that F is contained in a bounded set.
Now let (v, p) be a suitable weak solution defined in an open set D. With-

out loss of generality, we may assume that D is bounded. By Theorem 26.2,
if (x, t) belongs to the singular set S,

lim sup
r→0

1

r

∫∫
Qr

|∇v|2 dxdt > ε1.

Let F be a neighborhood of S in D, and let δ > 0. For each (x, t) ∈ S, we
choose Qr(x, t) with r < δ such

1

r

∫∫
Qr(x,t)

|∇v|2 dydτ > ε1, Qr(x, t) ⊂ F.

This plays the role of the family F of Lemma 28.1. Apply such a lemma to
this family of cylinders: we have a disjoint subfamily F ′ = {Qri(xi, ti)} such
that

S ⊂
∞⋃
i=1

Q5ri(xi, ti)

and
∞∑
i=1

ri ≤
1

ε1

∞∑
i=1

∫∫
Qri

|∇v|2 dydτ ≤ 1

ε1

∫∫
F

|∇v|2 dydτ.

Since δ is arbitrary, we conclude from the previous estimate that S has
Lebesgue measure zero, and also that

P1(S) ≤ 5

ε1

∫∫
F

|∇v|2dydτ

for every neighborhood F of S. Since |∇v|2 is an integrable function, it follows
that P1(S) = 0.

29 Proof of Theorem 26.2: A First Auxiliary Estimate

Let θo ∈ (0, 1) the quantity postulated in Theorem 26.2. For the moment we
assume it as given, and we further require it to be in (0, 1

4 ). The final argument
will determine it. We have the following.
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Lemma 29.1 Let ρ ∈ (0, 1) and r ∈ (θoρ,
ρ
4 ). Let (v, p) be a suitable weak

solution of the Navier-Stokes equations in Q1. Then, for almost every t ∈
(−ρ

2

2 , 0] we have

1

r2

∫
Br×{t}

|p| 32 dx ≤Cθo
1

ρ2

∫
Bρ×{t}

|v − v̄ρ|3 dx

+ Co

(
r

ρ

)
1

ρ2

∫
Bρ×{t}

|p| 32 dx,

where Cθo is a parameter that depends on θo, Co depends only on the dimen-
sion N = 3, and

v̄ρ =
1

|Bρ|

∫
Bρ×{t}

v dx.

Proof. A rigorous proof is in [24, Lemma 5.3] and [37, Lemma 3.1]. Here we
concentrate on the main issues, and sketch the remainder. By rescaling, we can
assume ρ = 1 and directly work with the Navier-Stokes equation in Q1. If we
take the divergence of both terms, we easily conclude that for all t ∈ (− 1

2 , 0]

∆p = − div[(v · ∇)v] in B1.

Since div v = 0, it is a matter of straightforward computations to check that

div[(v · ∇)v] = ∂xivj∂xjvi in D′(B1)

with i, j = 1, 2, 3. For t fixed, we choose ρ̄ ∈ ( 1
2 , 1) such that∫

∂Bρ̄

|p| 32 dσ ≤ 3

∫
B1

|p| 32 dx,

and decompose
p = po + h,

where {
∆po = −∂xivj∂xjvi in Bρ̄,

po = 0 on ∂Bρ̄,

{
∆h = 0 in Bρ̄,

h = p on ∂Bρ̄.

Thus, for any θ ∈ (θo,
1
4 ) we have∫

Bθ×{t}
|p| 32 dx ≤ C

[∫
Bθ×{t}

|po|
3
2 dx+

∫
Bθ×{t}

|h| 32 dx

]
.

We need to estimate the two terms on the right-hand side.
It is not hard to see that the defining relation of po can be rewritten as{

∆po = −∂xi(vj − v̄j)∂xj (vi − v̄i) in Bρ̄,

po = 0 on ∂Bρ̄,
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where

v̄i =
1

|B1|

∫
B1

vi dx.

By the Calderón-Zygmund estimates, we conclude that∫
Bθ×{t}

|po|
3
2 dx ≤ Cθo

∫
B1×{t}

|v − v̄|3 dx.

On the other hand, since h is harmonic and s
3
2 is a convex, monotone increas-

ing function in [0,∞), |h| 32 is sub-harmonic, so that

|h| 32 ≤
∫
∂Bρ̄

|p| 32 dσ ≤ 3

∫
B1

|p| 32 dx,∫
Bθ×{t}

|h| 32 dx ≤ C
∫
B1×{t}

|p| 32 dx,

and finally∫
Bθ×{t}

|p| 32 dx ≤ Cθo
∫
B1×{t}

|v − v̄ρ|3 dx+ Co

∫
B1×{t}

|p| 32 dx.

If we now rescale back to a general ρ ∈ (0, 1), we conclude.

Integrating the previous relation with respect to t, and taking into account
(26.5) yields

D(r) ≤ Cθo
1

ρ2

∫∫
Qρ

|v − v̄ρ|3 dxdt+ Co

(
r

ρ

)
D(ρ)

for ρ ∈ (0, 1) and r ∈ (θoρ,
ρ
4 ). Let us now deal with the first term on the

right-hand side. We have

1

ρ2

∫∫
Qρ

|v − v̄ρ|3 dxdt =
1

ρ2

∫∫
Qρ

|v − v̄ρ|
3
2 |v − v̄ρ|

3
2 dxdt

≤ 1

ρ2

∫ 0

−ρ2

[∫
Bρ

|v − v̄ρ|2 dx

] 3
4
[∫

Bρ

|v − v̄ρ|6 dx

] 1
4

dt

≤ 1

ρ2

[
sup

−ρ2<t<0

∫
Bρ

|v − v̄|2 dx

] 3
4 ∫ 0

−ρ2

[∫
Bρ

|v − v̄ρ|6 dx

] 1
4

dt

≤ C

ρ2

[
1

ρ
sup

−ρ2<t<0

∫
Bρ

|v − v̄|2 dx

] 3
4

ρ
3
4

[∫∫
Qρ

|∇v|2 dxdt

] 3
4

ρ
2
4 ,

where we have first applied the Sobolev-Poincaré inequality with p = 2,N = 3,
q = 6, and then the Hölder inequality. Hence,
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1

ρ2

∫∫
Qρ

|v − v̄ρ|3 dxdt ≤ C

[
1

ρ
sup

−ρ2<t<0

∫
Bρ

|v|2 dx

] 3
4
[

1

ρ

∫∫
Qρ

|∇v|2 dxdt

] 3
4

= C[A(ρ)]
3
4 [B(ρ)]

3
4 ,

and we conclude that for any ρ ∈ (0, 1) and r ∈ (θoρ,
ρ
4 )

D(r) ≤ Cθo [A(ρ)]
3
4 [B(ρ)]

3
4 + C

(
r

ρ

)
D(ρ). (29.1)

30 Proof of Theorem 26.2: A Second Auxiliary Estimate

We consider the localized energy inequality. We take a test function ϕ ∈ C∞o
such that

0 ≤ ϕ ≤ 1, ϕ = 1 in B ρ
2
× (−ρ

2

2
, 0], ϕ = 0 in R3\[Bρ × (−ρ2, ρ2]],

|∇ϕ| ≤ C1

ρ
, 0 ≤ ∂tϕ ≤

C2

ρ2
, |∆ϕ| ≤ C2

ρ2
.

It is easy to see that by the assumptions on v and ϕ, for t ∈ (−ρ2, 0] we have∫
Bρ×{t}

|v|2ϕdx+ 2

∫∫
Qρ

|∇v|2ϕdxdt

≤
∫∫

Qρ

|v|2 (∂tϕ+∆ϕ) dxdt+

∫∫
Qρ

(
|v|2 − |v̄|2 + 2p

)
v · ∇ϕdxdt

≤
∫∫

Qρ

|v|2 (∂tϕ+∆ϕ) dxdt+

∫∫
Qρ

(∣∣|v|2 − |v̄|2∣∣+ 2p
)
v · ∇ϕdxdt,

where

|v̄|2 =
1

|Bρ|

∫
Bρ×{t}

|v|2 dx.

We estimate all the terms. We have∫∫
Qρ

2pv · ∇ϕdxdt ≤ C1

ρ

∫∫
Qρ

|p||v| dxdt

≤ C1

ρ

[∫∫
Qρ

|p| 32 dxdt

] 2
3
[∫∫

Qρ

|v|3 dxdt

] 1
3

≤ C1

ρ
ρ2

[
1

ρ2

∫∫
Qρ

|p| 32 dxdt

] 2
3
[

1

ρ2

∫∫
Qρ

|v|3 dxdt

] 1
3

= C1ρ[D(ρ)]
2
3 [C(ρ)]

1
3 .
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In the same way∫∫
Qρ

∣∣|v|2 − |v̄|2∣∣v · ∇ϕdxdt
≤C1

ρ

∫ 0

−ρ2

[∫
Bρ

∣∣|v|2 − |v̄|2∣∣ 3
2 dx

] 2
3
[∫

Bρ

|v|3 dx

] 1
3

dt

≤C1

ρ

∫ 0

−ρ2

[∫
Bρ

∣∣∇|v|2|∣∣ dx][∫
Bρ

|v|3 dx

] 1
3

dt

≤C3

ρ

∫ 0

−ρ2

[∫
Bρ

|v||∇v| dx

][∫
Bρ

|v|3 dx

] 1
3

dt

≤C3

ρ

∫ 0

−ρ2

[∫
Bρ

|v|2dx

] 1
2
[∫

Bρ

|∇v|2dx

] 1
2
[∫

Bρ

|v|3dx

] 1
3

dt

≤C3

ρ

[
sup

−ρ2<t<0

∫
Bρ

|v|2dx

] 1
2

·

·

[∫∫
Qρ

|∇v|2 dxdt

] 1
2

∫ 0

−ρ2

(∫
Bρ

|v|3dx

) 2
3

dt


1
2

.

Since∫ 0

−ρ2

(∫
Bρ

|v|3dx

) 2
3

dt


1
2

≤

[∫∫
Qρ

|v|3 dxdt

] 1
3

ρ
1
3

≤

[
1

ρ2

∫∫
Qρ

|v|3 dxdt

] 1
3

ρ = ρ[C(ρ)]
1
3 ,

we conclude that∫∫
Qρ

∣∣|v|2 − |v̄|2∣∣v · ∇ϕdxdt
≤C3

ρ

[
1

ρ
sup

−ρ2<t<0

∫
Bρ

|v|2dx

] 1
2
[

1

ρ

∫∫
Qρ

|∇v|2 dxdt

] 1
2

·

· ρ2[C(ρ)]
1
3 = C3ρ[A(ρ)]

1
2 [B(ρ)]

1
2 [C(ρ)]

1
3 .

We choose r ∈ (θoρ,
ρ
4 ) as in Lemma 29.1; notice that by the previous choices,

ϕ = 1 in Qr. We have∫
Bρ×{t}

|v|2ϕdx+ 2

∫∫
Qρ

|∇v|2ϕdxdt
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≥
∫
Br×{t}

|v|2 dx+ 2

∫∫
Qr

|∇v|2 dxdt

≥r

[
1

r
sup

−r2<t<0

∫
Br×{t}

|v|2 dx

]
+ r

[
1

r

∫∫
Qr

|∇v|2 dxdt
]

=r [A(r) +B(r)] .

On the other hand∫∫
Qρ

|v|2 (∂tϕ+∆ϕ) dxdt

≤C2

ρ2

∫∫
Qρ

|v|2 dxdt ≤ C2

ρ2

[∫∫
Qρ

|v|3 dxdt

] 2
3

ρ
5
3

≤C2

[
1

ρ2

∫∫
Qρ

|v|3 dxdt

] 2
3
ρ

5
3

ρ
2
3

= C2ρ[C(ρ)]
2
3 .

Collecting all the estimates obtained so far, yields

r
[
A(r)+B(r)

]
≤ C2ρ[C(ρ)]

2
3 + C3ρ[A(ρ)]

1
2 [B(ρ)]

1
2 [C(ρ)]

1
3 + C1ρ[D(ρ)]

2
3 [C(ρ)]

1
3 ,

that is

A(r) +B(r)

≤ C
(ρ
r

) [
[C(ρ)]

2
3 + [A(ρ)]

1
2 [B(ρ)]

1
2 [C(ρ)]

1
3 + [D(ρ)]

2
3 [C(ρ)]

1
3

]
.

(30.1)

31 The Proof of Theorem 26.2 Concluded

The proof of Theorem 26.2 relies on a clever combination of (23.1), (29.1),
(30.1). We recall that θo ∈ (0, 1

4 ) still needs to be fixed. The next argument
will determine it, together with ro. We let ρ = 2r and we select three different
radii, i.e.

θor, 2θor, r,

so that the three previous relations will be written only in terms of r and θo.
Notice that the choice of the three radii allows us to use all the three (23.1),
(29.1), (30.1). Moreover, we remark that

B(θor) =
1

θor

∫∫
Qθor

|∇v|2 dxdt

≤ 2
1

2θor

∫∫
Q2θor

|∇v|2 dxdt = 2B(2θor)
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≤ 1

θo

1

r

∫∫
Qr

|∇v|2 dxdt =
1

θo
B(r),

and

A(θor) =
1

θor
sup

−θ2
or

2<t<0

∫
Bθor

|v|2 dx

≤ 2
1

2θor
sup

−4θ2
or

2<t<0

∫
B2θor

|v|2 dx = 2A(2θor)

≤ 1

θo

1

r
sup

−r2<t<0

∫
Br

|v|2 dx =
1

θo
A(r),

so that

B(θor) ≤ 2B(2θor) ≤
1

θo
B(r),

A(θor) ≤ 2A(2θor) ≤
1

θo
A(r).

(31.1)

Finally

D(θor) =
1

θ2
or

2

∫∫
Qθor

|p| 32 dxdt

≤ 4
1

4θ2
or

2

∫∫
Q2θor

|p| 32 dxdt = 4D(2θor)

≤ 1

θ2
o

1

r2

∫∫
Qr

|p| 32 dxdt =
1

θ2
o

D(r),

that is

D(θor) ≤ 4D(2θor) ≤
1

θ2
o

D(r). (31.2)

Writing (30.1) for θoR and 2θor yields

[A(θor)]
3
2 ≤C

[
2

3
2C(2θor) + 2

3
2 [A(2θor)]

3
4 [B(2θor)]

3
4 [C(2θor)]

1
2

+2
3
2 [D(2θor)][C(2θor)]

1
2

]
≤C

[
C(2θor) + [A(2θor)]

3
2 [B(2θor)]

3
2 + [D(2θor)]

2
]
.

Relying on (23.1), (29.1), and on (31.1)–(31.2) we have

[A(θor)]
3
2 + [D(θor)]

2

≤C
[
C(2θor) + [A(2θor)]

3
2 [B(2θor)]

3
2 + [D(2θor)]

2
]

≤C
[
θ3
o[A(r)]

3
2 +

1

θ3
o

[A(r)]
3
4 [B(r)]

3
4 + [A(2θor)]

3
2 [B(2θor)]

3
2
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+ θ2
o[A(r)]

3
2 [B(r)]

3
2 + θ2

o[D(r)]2
]

≤C

[
θ3
o[A(r)]

3
2 + θo[A(r)]

3
2 +

1

θ7
o

[B(r)]
3
2 +

1

θ
3
2
o

[A(r)]
3
2

1

θ
3
2
o

[B(r)]
3
2 +

+ θ2
o[A(r)]

3
2 [B(r)]

3
2 + θ2

o[D(r)]2
]

≤C1θo

[
[A(r)]

3
2

(
1 + θ2

o + θo[B(r)]
3
2 +

1

θ4
o

[B(r)]
3
2

)
+ [D(r)]2

]
+
C2

θ7
o

[B(r)]
3
2 .

This holds for r ∈ (0, ro) and θo ∈ (0, 1
4 ), where both ro and θo still have to

be chosen.
In view of the assumption on θo and of the final thesis, without loss of

generality we may assume that

θ2
o + θo[B(r)]

3
2 +

1

θ4
o

[B(r)]
3
2 ≤ C2

θ7
o

[B(r)]
3
2 ,

C2

θ7
o

[B(r)]
3
2 = ε3,

for some 0 < ε3 << 1 which depends on ε1, so that the previous relation
becomes

[A(θor)]
3
2 + [D(θor)]

2 ≤ C3θo

[
[A(r)]

3
2 + [D(r)]2

]
+ ε3.

If
[A(r)]

3
2 + [D(r)]2 < ε2,

where ε2 is the quantity of (26.4), we have finished. Otherwise, let ε3 be so
small that

ε3 =
C2

θ7
o

[B(r)]
3
2 ≤ C3θoε2 ≤ C3θo

[
[A(r)]

3
2 + [D(r)]2

]
,

whence
[A(θor)]

3
2 + [D(θor)]

2 ≤ 2C3θo

[
[A(r)]

3
2 + [D(r)]2

]
.

Now we choose θo ∈ (0, 1
4 ) so small that 2C3θo ≤ 1

2 . Once θo is determined,
from

C2

θ7
o

[B(r)]
3
2 ≤ C3θoε2,

we choose ro such that the condition on the lim sup is satisfied.

32 Concluding Remarks

In the following we collect some final remarks about all the results we discussed
in these notes.
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32.1 Partial Regularity

The partial regularity of the Navier-Stokes equations per se is not a strange
result. Indeed, in general, for quasi-linear elliptic or parabolic systems the full
regularity is not expected. On the other hand, Navier-Stokes equations are a
semi-linear system, and in general such a situation ensures better regularity
than the quasi-linear setting.

Different (but equivalent!) statements of Theorems 26.1 and 26.2 are col-
lected and briefly commented upon in the survey work [38]. With respect
to the original work by Caffarelli, Kohn & Nirenberg, a somewhat simpli-
fied proof of the partial regularity is given in [29]. In these notes, we have
mainly followed such a presentation, trying to fix the frequent misprints of
Lin’s manuscript.

A slight improvement concerning the estimate of the Hausdorff dimension
of the singular set S is given in [4].

In [51] Vasseur gives an interesting proof of the partial regularity of suit-
able weak solutions, which is based on the truncations used by DeGiorgi in
his celebrated result about the local Hölder continuity of locally bounded,
local weak solutions of linear elliptic equations with bounded and measurable
coefficients (see [5]).

32.2 Boundary Behavior

Up to now we have said nothing about the smoothness at the boundary.
Suppose we consider

B+
r

def
= {|x| < r, x3 > 0}, Q+

r
def
= B+

r × (−r2, 0],

and we assume
v
∣∣
x3

= 0.

Can we find reasonable conditions on v for the space-time origin (0, 0) to be
a point where the same v is bounded?

A boundary version of the Ladyzhenskaya-Prodi-Serrin condition can be
stated in the following way.

Theorem 32.1. Assume that v ∈ W 1,n(−1, 0;W 2,m(B+
1 )) ∩ Lp,q(Q+

1 ) and
p ∈ Ln(−1, 0;W 1,m(B+

1 )) with

1 < m < p, 1 < n < q,
3

p
+

2

q
= 1,

is a weak solution of the Navier-Stokes equations in Q+
1 . Moreover, suppose

that v
∣∣
x3

= 0. Then v is bounded in a neighborhood of the origin.

The result is due to Solonnikov (see [46]).
A boundary version of the partial regularity can be given too. This requires

to define what suitable weak solutions at the boundary are. We refrain from
going into details here. The interested reader can refer to [38, Section 6].
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32.3 Suitable Weak Solutions

It is important to point out the real meaning and impact of suitable weak
solutions; indeed, it is true that we have localized the energy inequality, and
the boundary conditions play no role, but now the pressure p is present in all
the estimates, and in more than one sense the pressure can be considered as
a substitute for the boundary conditions.

In [19] He gives a proof of the partial regularity result for weak solutions.
He starts from a general definition, that contains weak solutions in the sense
of Leray-Hopf as a special case.

Problems and Complements

1c Navier-Stokes Equations in Dimensionless Form

A fluid is viscous if its infinitesimal particles at x at time t, moving with
velocity v(x, t) encounter a non-zero resistance R = −f(|v|)v, where f is a
smooth, non-negative function whose form is determined from experiments.
For sufficiently slow motions f(|v|) = const (in the air |v| ≤2 m/sec). In such
a case the motion is said to be in viscous regime. For an ideal fluid particle
assimilated to a ball of sufficiently small radius r

f(|v|) = 6πµr for |v| � 1 (viscous regime)

where µ is the dynamic viscosity. This form of f(|v|) implies that µ has
dimensions ρ[V ][L], where ρ is the density of the fluid. The dynamic viscosity
is a measure of a resistance offered by a fluid when forced to change its shape.
It is a sort of internal friction measured as the resistance elicited by two
ideal parallel planes, immersed in the fluid, when forced into a mutual sliding
motion. The unit of measure is the poise, after J.L.M. Poiseuille. It is measured
in dyne · s/cm2 and is the force distributed tangentially on a planar surface
of 1cm2, needed to cause a variation of velocity of 1 cm/sec between two ideal
parallel planes immersed in the fluid and separated by a distance of 1cm. For
water at 20oC, the dynamic viscosity is .01002 poise. The kinematic viscosity
is the ratio of the dynamic viscosity to the density of the fluid. The c.g.s. unit
of kinematic viscosity is the stoke, after G. G. Stokes.

For larger speeds, f(|v|) is proportional to |v| and the motion is said to be
in hydraulic regime (in the air 2 m/sec< |v| ≤200 m/sec). For an ideal fluid
particle penetrating the fluid and assimilated to a ball of sufficiently small
radius r

f(|v|) = 5πµr2|v| (hydraulic regime).
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4c Non-Homogeneous Boundary Data

Since E is bounded, by the embedding inequalities (2.5)-(2.6), the norm ‖ ·‖V
is equivalent to ‖∇ · ‖2. Thus we regard V as a Hilbert space by the inner
product 〈·, ·〉 = (∇·,∇·). For a fixed pair (u,w) ∈ V , let T(w,u) be the linear
bounded functional in V defined by

〈T (w,u),ϕ〉 = ν

∫
E

∇u : ∇ϕ dx

−
∫
E

{w · (u · ∇) + u · (b · ∇) + b · (u · ∇)}ϕ dx.

With g given by (4.4) consider also formally, the functional equation

T(w,u) = g in V ∗. (4.1c)

Then a weak solution of (4.1) is an element u ∈ V such that T(u,u) = g.

Proposition 4.1c Let the assumptions on f and a be in force so that in
particular (4.9) holds. Then for all w,u ∈ V with ‖u‖V > 0

‖T(w,u)‖ ≥ 1

2
ν. (4.2c)

Moreover, for any fixed w ∈ V , any solution u ∈ V of (4.1c) satisfies

‖∇u‖2 ≤
2γ

ν

[
‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
, (4.3c)

where γ is the constant of the embedding of V into L6(E;R3).

Remark 4.1c These estimates are independent of w. Thus in particular they
hold for solutions of T(u,u) = g.

Proof.

‖T(u,w)‖ = sup
‖ϕ‖=1

〈T(u,w),ϕ〉 ≥ 〈T(u,u),u〉
‖u‖V

.

4.1c Solving (4.1) by Galerkin Approximations

The space V is a separable Hilbert space by the inner product (∇·,∇·) and
hence it admits a countable base (e1, . . . , en, . . . ), orthonormal in (∇·,∇·).
Setting Vn = span{e1, . . . , en}, every w ∈ V can be written as

w = wn +
∑
j>n

wjej where wn =
n∑
j=1

wjej ∈ Vn (4.4c)

for scalar wj . If u ∈ V is a solution of (4.1) in the sense of (4.4)-(4.5), the latter
holds for ϕ = ei. In the resulting expression write u in the form (4.4c), and
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notice that the terms involving
∑
j>nujej tend to zero as n→∞. This sug-

gests defining an approximate solution of (4.1) a function un ∈ Vn, satisfying
(4.5) for ϕ = ei, for all i = 1, . . . , n, i.e.,

n∑
j=1

{
ν

∫
E

∇ej : ∇eidx+

∫
E

ei · (un · ∇)ejdx

+

∫
E

ei · (b · ∇)ejdx+

∫
E

ei · (ej · ∇)bdx
}

ij
uj =

∫
E

g · eidx.

The elements {· · · }ij are the entries of a n × n matrix
(
Tij(un)

)
. The right

hand side defines a vector (g1, . . . , gn) ∈ Rn, identified with gn ∈ Vn. More
generally, for wn ∈ Vn define Tij(wn) as Tij(un), with wn replacing un, and
seek solutions (u1, . . . , un) ∈ Rn of

Tij(wn)uj = gi for i = 1, . . . , n. (4.5c)

The corresponding un ∈ Vn is a solution of T(wn,un) = gn. The Galerkin
approximations of (4.1) is function un ∈ Vn satisfying

〈T(un,un),ϕn〉 = 〈gn,ϕn〉 for all ϕn ∈ Vn. (4.6c)

Proposition 4.2c
(i). For all n there exists a Galerkin approximation un to (4.1).
(ii). A sequence {un} of Galerkin approximations is equibounded in V .
(iii). Any u in the weak closure of {un} is a solution of (4.1).

Prove the proposition by the following steps:

Step 1. Use (4.2c) to prove that det
(
Tij(wn)

)
≥ 1

2ν, for all wn ∈ Vn.
Therefore, for all gn ∈ Vn there exists a unique un ∈ Vn satisfying (4.5c).

Step 2. Introduce the map B(wn) = un from Rn into itself. Prove that
such a map and its inverse B−1 are well defined and continuous in Rn.

Step 3. Use (4.3c) to prove that map B−1 maps the ball of radius

2γ
[
‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
/ν into itself.

Step 4. Therefore, B(·) has a fixed point by the Brouwer fixed point theorem
(see [2]). Any such fixed point, identified with an element un ∈ Vn, solves
(4.6c).

Step 5. Use (4.3c) to prove that ‖∇un‖2 ≤ 2γ
[
‖f‖ 6

5
+ ν‖∇b‖2 + ‖b‖24

]
/ν

for all n ∈ N. Therefore, the embedding {un} ⊂ Lp(E;R3) is compact for
all 1 < p < 6.

Step 6. Having fixed u in the weak closure of {un}, a subsequence can be
selected and relabeled with n, such that {∇un} → ∇u weakly in L2(E;R3)
and {un} → u strongly in L4(E;R3).

Step 7. Let n→∞ in (4.6c), justifying the limits of each term, to establish
the existence of a solution of (4.1) in the form (4.5).
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4.2c Extending Fields a ∈W 1
2 ,2(∂E;R3), Satisfying (4.2) into

Solenoidal Fields b ∈W 1,2(E;R3)

We will prove the following result.

Proposition 4.3c Let E be a bounded, simply connected, open set in RN
(N = 2, 3) with boundary ∂E of class C1 having one connected component,

and satisfying the segment property. For every vector field a ∈W 1
2 ,2(∂E;RN )

satisfying ∫
∂E

a · n dσ = 0,

where n is the outward unit normal to ∂E, there exists a vector field ψ ∈
W 2,2(E;RN ) such that b = curlψ is an extension of a into E. The function
ψ can be chosen to be compactly supported about ∂E. Furthermore, for every
fixed ε > 0 the vector field ψ can be chosen so that for every u ∈ V

‖|u|| curlψ|‖2 ≤ χ(ε)‖∇u‖2 in E, (4.7c)

where χ(ε) → 0 as ε → 0. Finally if a ∈ Ck(∂E;RN ), for some k = 1, . . . ,
and ∂E is of class Ck+1, then ψ can be taken of class Ck+1(E;RN ).

We need some preliminary Lemmas. The first and the second ones are
taken from [15], Chapter III, Section 6. In the last one, we follow the approach
developed in [23], Chapter 1, Section 2 and in [13], Lemma 2.1; see also [16],
Chapter VIII, Section 4.

Lemma 4.1c Let E be a bounded, open set in RN and let

δ(x) = dist(x, ∂E).

For any ε > 0 define γ(ε) = exp

(
−1

ε

)
. Then, there exists a function ϕε ∈

C∞(E) such that

• |ϕε(x)| ≤ 1 for all x ∈ E,
• ϕε(x) = 1 if δ(x) < γ2(ε)/(2κ1),
• ϕε(x) = 0 if δ(x) ≥ 2γ(ε),
• |∇ϕε(x)| ≤ κ2ε/δ(x) for all x ∈ E,

where κ1, κ2 depend only on N .

Proof. We first recall the following result, for whose proof we refer to [47],
Chapter VI, Theorem 2:

There exists a function ρ ∈ C∞(E) such that for all x ∈ E

1. δ(x) ≤ ρ(x);
2. for any partial derivative of order α, |α| ≥ 0, we have

|Dαρ(x)| ≤ κ|α|+1[δ(x)]1−|α|,
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where all κ|α|+1 depend only on α and N .
Now consider the function ξε : R→ R defined by

ξε(t) =


1 if t < γ2(ε),

ε ln
(
γ(ε)
t

)
if γ2(ε) < t < γ(ε),

0 if t > γ(ε).

Now, choose η = γ2(ε)/2, a mollifier jη, and consider the mollified function
Ξε ≡ ξε ∗ jη. It is not hard to check that

• Ξε(t) = 1 for t < γ2(ε)/2,
• Ξε(t) = 0 for t > 2γ(ε),
• |Ξε(t)| ≤ 1 for all t ∈ R,
• |Ξ ′ε(t)| ≤ ε/t for all t ∈ R.

We now let ϕε(x) = Ξε(ρ(x)); taking into account 1. and 2. above and the
bound on |Ξ ′ε|, we conclude that

ϕε(x) = 1 if δ(x) < γ2(ε)/2κ1,

ϕε(x) = 0 if δ(x) > 2γ(ε),

|∇ϕε(x)| ≤ κ2ε/ρ(x) ≤ κ2ε/δ(x) for all x ∈ E,

for proper, positive κ1 and κ2, which depend only on N .

Lemma 4.2c Let E ⊂ RN be a bounded, Lipschitz, open set. Then, there
exists c = c(E) such that for all u ∈W 1,2

o (E) we have

‖u
δ
‖2 ≤ c ‖∇u‖2,

where δ = δ(x) is the function, which has been defined above.

Proof. By density it suffices to assume u ∈ C∞o (E). By the theory of Sobolev
spaces, for every open set E′ ⊂⊂ E, we have

‖u‖2;E′ ≤ c1 ‖∇u‖2;E ,

where c1 = c1(N,E). In order to conclude, we have to take into account the
behavior close to the boundary ∂E. We recall that a bounded domain E ⊂ RN
is said to be a Lipschitz domain, if there exists a radius ro, such that for each
y ∈ ∂E, in an appropriate coordinate system,

E ∩B8ro(y) = {x = (x′, xN) ∈ RN : xN > Φ(x′)} ∩B8ro(y),

∂E ∩B8ro(y) = {x = (x′, xN) ∈ RN : xN = Φ(x′)} ∩B8ro(y),

where Φ is a Lipschitz function, with ‖∇Φ‖L∞ ≤ L. The quantities ro and L
are independent of y ∈ ∂E. We say that L is the Lipschitz constant of E.

If we set
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G(y) = E ∩B8ro(y),

it is not hard to check that ∃c2 = c2(E), such that

∀x ∈ G(y) xN − Φ(x′) ≤ c2 δ(x).

Therefore, if we let y = (y′, yN), and B′ro(y
′) denotes the (N − 1)-dimensional

ball centered at y′, we have∫
G(y)

1

δ2(x)
|u(x)|2 dx ≤ c2

∫
B′8ro (y′)

dx′
∫ Φ(x′)+16ro

Φ(x′)

|u(x′, xN)|2

|xN − Φ(x′)|2
dxN ,

and the wanted estimate follows from the one-dimensional inequality∫ ∞
0

|h(t)|q

tq
dt ≤ q

q − 1

∫ ∞
0

∣∣∣∣dhdt
∣∣∣∣q dt,

which holds for any h ∈ C∞o (R+) and for any q > 1, and which can be easily
proved integrating the identity

|h(t)|q

tq
=

d

dt

[
t1−q

1− q
|h(t)|q

]
− t1−q

1− q
d

dt
|h(t)|q.

Lemma 4.3c Let E be a bounded, simply connected, open set in RN (N =
2, 3) with boundary ∂E of class C1, having one connected component, and

satisfying the segment property. For every vector field a ∈ W
1
2 ,2(∂E;RN )

satisfying ∫
∂E

a · n dσ = 0, (4.8c)

where n is the outward unit normal to ∂E, there exists a vector field w ∈
W 2,2(E;RN ) such that a = curl w in the sense of traces on ∂E. Moreover,

‖w‖W 2,2(E) ≤ c ‖a‖W 1/2,2(∂E), (4.9c)

where c depends on N and E.

Proof. For the moment we assume ∂E smooth, without further specification,
to the extent that all the necessary operations can be performed. At the end
we will briefly discuss how conditions can be relaxed in a way that all the
needed estimates are still justified.

First we consider the case N = 3; later on we will briefly deal with N = 2,
which is considerably simpler. Let n be the outward unit normal to ∂E and
rewrite a as

a = aτ + ann,

where an = a · n and aτ is the component of a tangential to ∂E.
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We first look for a solenoidal vector field b1 : E → R3, b1 ∈W 1,2(E;R3),
such that {

b1 = ∇ϕ in E,

b1 · n = an on ∂E.

Since div b1 = 0, this implies that ϕ is a solution of
∆ϕ = 0 in E,

∂ϕ

∂n
= an on ∂E.

This is a Neumann problem for the Laplacean in E, and condition (4.8c)
ensures that a solution ϕ ∈W 2,2(E) exists, up to an arbitrary constant. Hence
b1 ∈ W 1,2(E;R3) is well-defined. Moreover, since E is simply connected, by
well-known results, there exists w1 ∈W 2,2(E;R3) such that

b1 = curl w1.

If we now let

b
def
= b1 + b2,

the vector b is completely determined, if b2 solves{
div b2 = 0 in E,

b2 = a− b1 on ∂E,
(4.10c)

taking into account that, by construction,

(a− b1) · n = 0 on ∂E. (4.11c)

In order to explain the main ideas underlying the construction of b2, we first
consider the simple situation of

E = {(x1, x2, x3) ∈ R3 : x3 > 0}, ∂E = {(x1, x2, x3) ∈ R3 : x3 = 0},

before dealing with general E and ∂E. At this step E is not bounded, but it
is immaterial for what we are going to do. We have

a =a1(x1, x2)e1 + a2(x1, x2)e2 + a3(x1, x2)e3,

b1 =b1,1(x1, x2, x3)e1 + b1,2(x1, x2, x3)e2 + b1,3(x1, x2, x3)e3,

where b1,3(x1, x2, 0) = a3(x1, x2). By (4.11c), we have

a− b1

∣∣
∂E

= (a1(x1, x2)− b1,1(x1, x2, 0))e1 + (a2(x1, x2)− b1,2(x1, x2, 0))e2.

If we let

hi(x1, x2) = ai(x1, x2)− b1,i(x1, x2) for i = 1, 2, h3(x1, x2) = 0,
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and b2 = curl w2, solving (4.10c) reduces to determining w2 : E → R3,
w2 ∈W 2,2(E;R3), such that curl w2

∣∣
x3=0

= h in the sense of traces, i.e.

∂w2,3

∂x2
(x1, x2, 0)− ∂w2,2

∂x3
(x1, x2, 0) = h1(x1, x2)

∂w2,1

∂x3
(x1, x2, 0)− ∂w2,3

∂x1
(x1, x2, 0) = h2(x1, x2)

∂w2,2

∂x1
(x1, x2, 0)− ∂w2,1

∂x2
(x1, x2, 0) = 0.

Choosing

∂w2,3

∂x1
(x1, x2, 0) =

∂w2,3

∂x2
(x1, x2, 0) =

∂w2,2

∂x1
(x1, x2, 0) =

∂w2,1

∂x2
(x1, x2, 0) = 0

yields

−∂w2,2

∂x3
(x1, x2, 0) = h1(x1, x2)

∂w2,1

∂x3
(x1, x2, 0) = h2(x1, x2).

If we assume that w2,1(x1, x2, 0) = w2,2(x1, x2, 0) = w2,3(x1, x2, 0) = 0, we
conclude that a solution is given by

w2,1(x1, x2, x3) = x3h2(x1, x2)

w2,2(x1, x2, x3) = −x3h1(x1, x2)

w2,3(x1, x2, x3) = 0.

Notice that w2(x1, x2, 0) = 0 for any (x1, x2) ∈ R2. The vector field we were
looking for is then

b = curl w1 + curl w2 = curl(w1 + w2) = curl w.

Now, we turn to consider the case of a general simply connected, bounded open
set E ⊂ R3, with smooth boundary ∂E having one connected component. As
before, we can proceed with the construction of the vector field b1 = ∇ϕ =
curl w1, so that it only remains to determine w2 in this new context.

Consider a partition of the unity for the set E, namely a collection of C∞

functions ψk with compact support ∆k, such that∑
k

ψk(x) = 1 ∀x ∈ E.

Without loss of generality, we can assume each ψk to be defined on all R3. Let
∂Ek be the intersection of ∂E with the domain where ψk 6≡ 0, provided such
a domain has indeed a non-empty intersection with ∂E. For each fixed ψk, we
can now introduce a smooth change of variables (y1,k, y2,k, y3,k) such that in
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the new coordinates, ∂Ek is the graph of y3 = 0 in a compact set Dk ⊂ R2,
and the coordinate system is orthogonal on ∂Ek.

If we let (a − b1)k = ψk(a − b1), we are going to build a vector field
(b2)k = curl(w2)k such that (b2)k = (a− b1)k on ∂E, and

b = curl w1 +
∑
k

(b2)k = curl w1 +
∑
k

curl(w2)k.

Take (a − b1)k, perform the previously mentioned change of variables that
flattens the portion ∂Ek of the boundary ∂E, and let hk be the restriction on
y3 = 0 of the new vector field thus obtained. By construction, hk has compact
support, and we also have hk = (h1,k(y1, y2), h2,k(y1, y2), 0).

Consider P = P (x∗1, x
∗
2, x
∗
3) ∈ ∂E. If P ∈ ∂E\∂Ek, then (a− b1)k(P ) = 0

and we can take (w2)k(P ) = ∇(w2)k(P ) = 0.
On the other hand, if P ∈ ∂Ek, then the corresponding point

Q = Q(y∗1 , y
∗
2 , 0) ∈ supp hk,

and we can proceed with the construction of (w2)k as we have done before
for the set E = {y3 > 0}. The vector field (w2)k = (w2)k(y1, y2, y3) vanishes
as (y1, y2) 6∈ Dk, but there is no condition on y3. On the other hand, a careful
inspection of the construction for E = {y3 > 0} shows that if we consider a
function f ∈ C∞o (R) with f(0) = 0, f ′(0) = 1, supp f = [−r, r] and r > 0
arbitrary, also the vector field

w2,1(x1, x2, x3) = f(x3)h2(x1, x2)

w2,2(x1, x2, x3) = −f(x3)h1(x1, x2)

w2,3(x1, x2, x3) = 0.

is a solution. Therefore, the support of (w2)k(y) can be contained in a neigh-
borhood of Dk of height r. Once (w2)k(y) has been built, applying the inverse
change of variable, we obtain (b2)k(x) = curl(w2)k(x).

Since we have defined (w2)k(P ) in two different ways, namely taking into
account whether P ∈ ∂E\∂Ek or P ∈ ∂Ek, we still need to check that the
values of (w2)k and its derivatives are all compatible. Again, a careful control
of the proof, shows that the only requirement is that the tangential derivatives
have to vanish, and this is surely satisfied by our construction.

As for the smoothness of (w2)k, it is a direct consequence of the smooth-
ness of a, and also of the smoothness of ∂E, which affects the regularity of
the change of variables. In particular, if ∂E is of class C1 and has the seg-
ment property, and a ∈ W

1
2 ,2(∂E), then it is a matter of straightforward

computations to see that the previous construction yields b ∈ W 1,2(E) and
b = curl w1 + curl w2 with w1, w2 ∈ W 2,2(E). As for (4.9c), it is a conse-
quence of standard elliptic estimates.

On the other hand, if we consider regularity in the class of continuous
functions, once more it is relatively easy to see, as pointed out in [23], that if
∂E is a C2 surface and a is continuous on ∂E, then b is continuous on E.
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When E ⊂ R2, things are much easier. Recalling that E is simply con-
nected, we look for b in the form

b =

(
∂w

∂x2
,− ∂w

∂x1

)
.

The condition b
∣∣
∂E

= a gives the values of ∂w∂n and ∂w
∂τ on ∂E. From the values

of ∂w
∂τ on ∂E, we determine w on ∂E up to an arbitrary constant, and w is a

single valued continuous function, as∫
∂E

∂w

∂n
dσ =

∫
∂E

a · n dσ = 0.

Once we know w
∣∣
∂E

and
∂w

∂n

∣∣
∂E

, we can finally build w in E.

4.3c Proof of Proposition 4.3c

By Lemma 4.3c, if N = 3 there exists w ∈ W 2,2(E) (if N = 2, we have
w ∈ W 2,2(E)) such that curl w(x) = a(x) for any x ∈ ∂E. For any ε > 0, let
ϕε ∈ C∞(E) be the function built in Lemma 4.1c and set

ψ
def
= ϕεw, b = curlψ = curl(ϕεw).

By construction ψ ∈ W 2,2(E), it is compactly supported about ∂E, and for
any x ∈ ∂E we have

ψ(x) = w(x) ⇒ curlψ(x) = curl w(x) = a(x).

Moreover, due to its very definition, and to (4.9c)

‖ curlψ‖W 1,2(E) ≤ c ‖a‖W 1/2,2(∂E).

It remains to show the validity of (4.7c). Lemma 4.1c yields

|b(x)| ≤ εκ2

δ(x)
|w(x)|+ |∇w(x)| if δ(x) < 2γ(ε),

and
b(x) = 0 if δ(x) ≥ 2γ(ε).

By the Sobolev embedding Theorem

|w(x)| ≤ c ‖w‖2,2,
‖∇w‖3 ≤ c ‖w‖2,2,

and by (4.9c) this implies

|w(x)|+ ‖∇w‖3 ≤ c ‖a‖W 1/2,2(∂E). (4.12c)
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Therefore, for every u ∈ V , we have

‖|u|| curlψ|‖2 ≤c ε‖a‖W 1/2,2(∂E)‖
1

δ
u‖2

+

(∫
δ(x)<2γ(ε)

|u|2|∇w|2 dx

) 1
2

≤c ε‖a‖W 1/2,2(∂E)‖
1

δ
u‖2 + ‖∇u‖2‖∇w‖3,Eε ,

where

Eε
def
= {x ∈ E : δ(x) < 2γ(ε)}.

Due to (4.12c), we have that ζ(ε)
def
= ‖∇w‖3;Eε vanishes as ε → 0, whereas

Lemma 4.2c yields ‖δ−1u‖2 ≤ c ‖∇u‖2; therefore, we can conclude

‖|u|| curlψ|‖2 ≤ c
(
ε‖a‖W 1/2,2(∂E) + ζ(ε)

)
‖∇u‖2 = χ(ε)‖∇u‖2,

where χ(ε)→ 0 as ε→ 0.

4.4c The Case of a General Domain E

We briefly discuss what happens, when E ⊂ RN , N = 2, 3, is not simply
connected, and/or the boundary ∂E has multiple connected components Γi,
i = 1, . . . ,m with m > 1.

Consequently, the natural compatibility condition on the velocity v at the
boundary ∂E, required by the incompressibility of the fluid, is∫

∂E

a · n dσ =

m∑
i=1

∫
Γi

a · n dσ = 0,

where n is the outward unit normal to ∂E, whereas the argument we have
presented above (which is Leray’s original argument in [26]) works if the con-
dition

∀i = 1, . . . ,m

∫
Γi

a · n dσ = 0

holds, which is obviously stronger. Moreover, such a stricter requirement does
not allow for the presence of extended sinks and sources into the region of
flow, which is physically interesting. The question of whether the problem
we have considered here, admits a solution only under the natural restriction
is a fundamental question in the mathematical theory of the Navier-Stokes
equations.

We refrain from further elaborating on this issue here. The reader inter-
ested in the solenoidal extension to a bounded open set which is not simply
connected, and/or has a boundary with multiple connected components, can
refer, for example, to [13], Section 2 and to [16], Chapter VIII.
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5c Recovering the Pressure

5.1c Proof of Proposition 5.1 for u ∈ H⊥ ∩ C∞(E;R3)

Pick w ∈ C∞o (E;R3). Then curl w ∈ V and hence, by the membership u ∈
H⊥, and by integration by parts∫

E

u · curl w dx = −
∫
E

curl u ·w dx = 0 for all w ∈ C∞o (E;R3).

By density this continues to hold for all w ∈ L2(E;R3). Therefore if u ∈
H⊥ ∩ C∞o (E;R3) then curl u = 0 in E. Since E is assumed to be convex,
denoting by η the coordinates in R3, the latter is a necessary and sufficient
condition for the differential form du = u · dη to be exact in E. Having fixed
x, y ∈ E consider a smooth path from y to x, i.e.,

γx,y =
{
η ∈ C1

[
(α, β);R3

]
, η(α) = y, η(β) = x; |η′| > 0.

}
The path integral

p(x, y) =

∫
γx,y

du =

∫ β

α

u
(
η(s)

)
· η′(s)ds (5.1c)

is independent of γx,y, and, for a fixed y ∈ E, uniquely defines a function
p(·, y) satisfying ∇p(·, y) = u. Moreover, for any y1, y2 ∈ E, by the stated
independence of the path integral, p(·, y2) = p(·, y1) + p(y1, y2). Since u ∈
C∞o (E;R3) one has p(·, y) ∈ C∞(E). To establish the proposition in the case
u ∈ H⊥ ∩ C∞(E;R3), fix y ∈ E and determine the function E 3 x→ p(x, y)
up to a constant.

5.2c Proof of Proposition 5.1 for u ∈ H⊥

Having fixed u ∈ H⊥, regard it as defined in R3 by extending it to zero outside
E. Pick w ∈ C∞o (E), and for ε > 0 denote by wε = Jε ∗w the ε-mollification
of w by the Friedrich’s mollifying kernel Jε(·). We choose ε sufficiently small,
such that wε ∈ C∞o (E;R3) and curl wε restricted to E is in H. Since u ∈ H⊥

0 =

∫
E

u · curl wε dx =

∫
R3

u · curl wε dx

=

∫
R3

uε · curl w dx =

∫
E

uε · curl w dx

= −
∫
E

curl uε ·w dx = 0

for all w ∈ C∞o (E;R3). By density this continues to hold for all w ∈ L2(E;R3).
Therefore, curl uε = 0 in E, and the path integral
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p(x, y; ε) =

∫
γx,y

duε =

∫ β

α

uε
(
η(s)

)
· η′(s)ds

is independent of γx,y ⊂ E. For a fixed y ∈ E, such an integral uniquely defines
a function p(·, y; ε) satisfying ∇p(·, y; ε) = uε. Moreover, for any y1, y2 ∈
E, by the stated independence of the path integral, p(·, y2; ε) = p(·, y1; ε) +
p(y1, y2; ε).

Proposition 5.1c There exists p(·, ·) ∈ L2(E×E) and a subnet {p(·, ·; ε′)} ⊂
{p(·, ·; ε)}, relabeled with ε such that as ε→ 0

p(·, ·; ε)→ p(·, ·) in L2(E × E) and a.e. in E × E
p(·, y; ε)→ p(·, y) in L2(E) for a.e. y ∈ E
p(x, y2) = p(x, y1) + p(y1, y2) a.e. in E × E
∇p(·, y; ε)→ ∇p(·, y) weakly in L2(E) for a.e. y ∈ E
∇p(·, y) = u for a.e. y ∈ E.

(5.2c)

We rely on the following result.

Lemma 5.1c There holds:

‖p(·, ·; ε)‖2;E×E ≤ 2
√

2π diam(E)
3
2 ‖uε‖2;E ≤ 2

√
2π diam(E)

3
2 ‖u‖2;E

uniformly in ε.

Proof. Fix ε > 0 and in computing p(x, y; ε) from (5.1c) take the segment

(0, |x− y|) 3 s→ y + sν where ν =
x− y
|x− y|

.

For such a choice, and Hölder’s inequality

p2(x, y; ε) ≤ diam(E)

∫ |x−y|
0

|uε|2(y + sν)ds.

Integrate both sides in dx over E, and compute the resulting integral on
the right-hand side in polar coordinates with pole at y and angular variable ν
ranging over the unit sphere of R3. Denote by R(y, ν) the polar representation
of ∂E with pole at y and set also z = y+sν so that the polar radius is s = |z−y|
and ranges over

(
0, R(y, ν)

)
. This gives

‖p(·, y; ε)‖22;E ≤ diam(E)2

∫
|ν|=1

(∫ R(y,ν)

0

|uε|2(y + sν)ds
)
dν

= diam(E)2

∫
‖ν‖=1

(∫ R(y,ν)

0

|uε(z)|2

|z − y|2
|z − y|2d|z − y|

)
dν

= diam(E)2

∫
E

|uε(z)|2

|z − y|2
dz.
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Next, integrate both sides in dy over E and estimate the resulting integral on
the right-hand side by making use of Fubini’s theorem to obtain

‖p(·, ·; ε)‖22;E×E ≤ diam(E)2

∫
E

|uε(z)|2dz sup
z∈E

∫
E

1

|z − y|2
dy

≤ 8π diam(E)3

∫
E

|uε(z)|2dz

≤ 8π diam(E)3‖u‖22;E .

The last inequality follows from the properties of the mollifying kernels.

Corollary 5.1c For all positive ε1, ε2

‖p(·, ·; ε1)− p(·, ·; ε2)‖2;E×E ≤ 2
√

2π diam(E)
3
2 ‖uε1 − uε2‖2;E .

Proof (of Proposition 5.1c). Since {uε} is Cauchy in L2(E;R3) the net
{p(·, ·; ε)} is Cauchy in L2(E × E) and by the completeness of L2(E × E)
there exists p(·, ·) ∈ L2(E × E) such that

lim
ε→0
‖p(·, ·; ε)− p(·, ·)‖2;E×E = 0.

Subnets can now be selected satisfying the first three statements in (5.2c). Fix
y ∈ E for which the second of (5.2c) holds and for ζ ∈ C∞o (E;R3) compute

lim
ε→0
〈∇p(·, y; ε), ζ〉L2(E) = lim

ε→0
−〈p(·, y; ε),div ζ〉L2(E)

= 〈u, ζ〉L2(E) = −〈p(·, y),div ζ〉L2(E).

5.3c More General Versions of Proposition 5.1

5.1. Convexity of E has been used in the previous proof, in order to conclude
that du is exact. Prove that Proposition 5.1c continues to hold if E is not
convex, but any two points x, y ∈ E can be connected by a smooth curve
γx,y ⊂ E of length not exceeding a fixed constant L. This would include
bounded, simply connected sets E with smooth boundary ∂E.

5.2. If E is unbounded let En = E ∩ {|x| < n} and assume that each En
satisfies the condition in 5.1 with the constant Ln possibly depending on
n. State and prove a local version of Proposition 5.1.

5.3. The Helmholtz-Weyl decomposition, sometimes also referred to as
Hodge decomposition, can be actually proven for any open set E ⊂ RN ,
if one works in L2(E;RN ), as it is the case here (see [15], § III.1). The
situation is more complicated if one works in Lp(E;RN ) with p ∈ (1,∞),
p 6= 2.
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8c Time-Dependent Navier-Stokes Equations in
Bounded Domains

In Section 8 we considered the Navier-Stokes equations in ET with E ⊂ R3

an open, bounded set with smooth boundary, and stated Hopf’s 1951 result
about the existence of weak solutions of the initial-boundary value problem
(8.1) ([20]).

As a matter of fact, the first result about the existence of weak solutions
dates back to 1934 and is due to Leray ([27]), who studied the problem in the
whole space R3 with divergence free initial condition uo ∈ L2(R3). Somehow,
the more difficult case was solved first.

10c Selecting Subsequences Strongly Convergent in
L2(ET )

Lemma 10.1c (Friedrichs [14]) Let Q ⊂ RN be a cube of edge L and let
u ∈ W 1,p(Q) for some 1 < p < N . For every ε > 0 there exist a positive
integer kε depending only on ε and L, and independent of u, and kε linearly
independent functions {ψ`}

kε
`=1 ⊂ Lp(Q) such that

‖u‖pp;Q ≤
kε∑̀
=1

∣∣∣ ∫
Q

u ·ψ` dx
∣∣∣p + ε‖∇u‖pp;Q. (10.1c)

Remark 10.1c The conclusion continues to hold if u ∈W 1,p
o (E), where E is

a bounded open set in RN . Indeed E can be included in a cube Q and, since
u has zero trace on ∂E, it can be extended in the whole cube by setting it to
be zero outside E.

10.1c Proof of Friedrichs Lemma

The starting point is Poincaré inequality which we state next. Let

uQ =
1

|Q|

∫
Q

u dx = −
∫
Q

u dx

denote the integral average of u over Q.

Theorem 10.1c (Poincaré Inequality). Let u ∈ W 1,p(Q). There exists a
constant γ depending only on the dimension N and p, such that

‖u− uQ‖p∗;Q ≤ γ‖∇u‖p;Q where p∗ =
Np

N − p
. (10.2c)

Proof. See [6], Chapter 10, § 10.1.
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Corollary 10.1c Let u ∈W 1,p(Q). There exists a constant γ depending only
on the dimension N and p, such that

‖u− uQ‖p;Q ≤ γL‖∇u‖p;Q. (10.3c)

Proof. Apply Hölder’s inequality to ‖u− uQ‖p;Q and use (10.2c).

Let k be a positive integer to be chosen and subdivide Q in kN equal subcubes
Q`, with pairwise disjoint interior and edge L/k. Then compute and estimate∫

Q

|u|pdx =
kN∑̀
=1

∫
Q`

|u|pdx =
kN∑̀
=1

∫
Q`

|(u− uQ`) + uQ` |pdx

≤ 2p−1
( k
L

)N(p−1) kN∑̀
=1

∣∣∣ ∫
Q`

udx
∣∣∣p + 2p−1

kN∑̀
=1

∫
Q`

|u− uQ` |pdx

≤
kN∑̀
=1

∣∣∣ ∫
Q

uψ`dx
∣∣∣p + γ2p−1L

k

kN∑̀
=1

∫
Q`

|∇u|pdx

=
kN∑̀
=1

∣∣∣ ∫
Q

uψ`dx
∣∣∣p + ε

∫
Q

|∇u|pdx

where we have set

ψ` = 2
p−1
p

( k
L

)N p−1
p χQ` and ε = γ2p−1L

k
.

10.2c Compact Embedding of W 1,p into Lq(Q) for 1 ≤ q < p∗

• Prove a version of (10.3c) with the left-hand side replaced by ‖u− uQ‖q;Q
for 1 ≤ q < p∗.

• Prove a version of Friedrichs lemma with the left-hand side of (10.1c)
replaced by ‖u‖q;Q.

• Use such a version to prove the indicated compact embedding.

If E is bounded, give conditions on ∂E so that u ∈W 1,p(E) can be extended
into a cube containing E with u ∈W 1,p(Q).

10.3c Solutions Global in Time

Let f ∈ L2(ET ;R3). Prove that a Hopf solution of (8.1) satisfies

‖v(t)‖2;E ≤ ‖vo‖2;E + ‖f‖2;Et

‖∇v‖2;Et ≤
1

ν
√

2

(
‖vo‖2;E + ‖f‖2;Et

) for a.e. t ∈ (0, T ). (10.4c)

If f ∈ L2(R+;L2(E;R3)), then (8.1) has a weak solution global in time, i.e.,
in E×R+. Moreover, such a solution satisfies the energy estimates (10.4c) for
all t ∈ R+.
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11c The Limiting Process and Proof of Theorem 8.1

In Section 11 we underlined that the strong convergence is needed to pass to
the limit in the non-linear term. We now discuss a counterexample, in order
to show that weak convergence in general does not suffice.

In particular, we consider a sequence {vn(x, t)} ⊂ L2(0, T ;W 1,2(E)) ∩
L∞(0, T ;L2(E)) which satisfies the Navier-Stokes equations (8.1) with f = 0
in the weak sense of (8.2). Moreover, we assume that

a) x 7→ vn(x, t) ∈ C∞(E) for a.e. t, uniformly in n;

b) ∂hvn
∂xhk

(x, t) ∈ L∞(ET ), k = 1, 2, . . . , N , h ∈ N, uniformly in n;

c) ∂
∂t∆vn ∈ L∞(ET ), uniformly in n.

In spite of the great regularity of a)-b)-c), we show that we do not have∫ T

0

∫
E

(vn · ∇) vn ·ϕ dxdt→
∫ T

0

∫
E

(v · ∇) v ·ϕ dxdt,

where v is the weak limit of vn in L2(ET ), and ϕ ∈ C∞o (ET ;RN ).
The counterexample is built in the following way. Let ψ be harmonic in E,
i.e. it satisfies div∇ψ ≡ ∆ψ = 0. Set

vn(x, t) = an(t)∇ψ,

where

{an} ⊂ L∞(0, T ) uniformly in n, and {an} ⊂ C1(0, T ).

Then vn satisfies (a)-(b)-(c) above. Moreover, vn satisfies the Navier-Stokes
equations, that is∫ T

0

∫
E

a′n(t)∇ψ ·ϕ dxdt−
∫ T

0

an(t)

∫
E

∆(∇ψ) ·ϕ dxdt

+

∫ T

0

a2
n(t)

∫
Ω

∂ψ

∂xi

∂2ψ

∂xi∂xj
ϕ dxdt = I1 + I2 + I3 = 0,

for every ϕ ∈ C∞(0, T ;V). Indeed, we have I1 = I2 = 0 trivially (we rely on
the integration by parts in I1). For I3 we have∫

E

∂ψ

∂xi

∂2ψ

∂xi∂xj
ϕ dx =

1

2

∫
E

∂

∂xj

(
N∑
i=1

(
∂ψ

∂xi

)2
)
ϕ dx

= −1

2

∫
E

|∇ψ|2 divϕ dx = 0.

Consider now a sequence {an} ⊂ L∞(0, T ) such that ‖an(t)‖L2(0,T ) = 1 and

an(t) ⇀ 0 weakly in L2(0, T ); for example, we could take an(t) =
√

2
T sin nπt

T .

Then
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vn(x, t) = an(t)∇ψ ⇀ 0

weakly in L2(ET ), but if we consider a general ϕ ∈ C∞o (ET ;RN )∫ T

0

∫
E

(vn · ∇) vn ·ϕ dxdt =
1

2

∫ T

0

a2
n(t)

[∫
E

∇(|∇ψ|2) ·ϕ dx
]
dt

= −1

2
‖an‖2L2(0,T )

(∫
E

|∇ψ|2 divϕ dx

)
= −1

2

(∫
E

|∇ψ|2 divϕ dx

)
6= 0.

12c Higher Integrability and Some Consequences

12.1. Explain why (8.2) holding for all ϕ ∈ C∞(0, T ;V) implies (12.2) holding
weakly for all ϕ ∈ C∞o (ET ;RN ).

13c Energy Identity for the Homogeneous Boundary
Value Problem with Higher Integrability

The proof of Proposition 13.1 essentially gives a way of taking ϕ = v in the
weak formulation (8.2).

Proposition 13.1c Let v be a weak solution of (8.2)o. Assume moreover that
v ∈ Lp,q(ET ;RN ) with p > N and q > 2 satisfying (12.3). Then v satisfies
the energy estimates (10.4c).

By the same token, Proposition 14.1 can be extended several ways. For exam-
ple, one may permit f not to be zero, or the boundary data for v and u not to
be zero, provided w = (v− u) has zero trace on ∂E. State and prove version
of such facts by writing the corresponding weak formulation for w and taking
ϕ = w in the indicated approximate sense. This is possible by the assumed
higher integrability on both v and u and hence w. For N = 2 such a higher
integrability assumption is redundant.

15c Local Regularity of Solutions with Higher
Integrability

The proofs of Theorem 15.1 in [40, 49] are based on a smart study of the
vorticity equation (18.2). This is why the pressure does not appear in the
statement. A careful analysis of the proof shows that the transport term is
dealt with, as if it were an external force.

For a different approach see [38], and also the references therein. Moreover,
in [38] Seregin extends his formulation of the regularity estimates up to the
boundary under homogeneous Dirichlet conditions on a half cylinder.
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16c Proof of Theorem 15.1 - Introductory Results

Proposition 16.1c Let k ∈ Lp,p′(RN × RM ;R) and g ∈ Lq,q′(RN × RM ;R)
with N, M ≥ 1, and

1 ≤ q ≤ r, 1 ≤ q′ ≤ r′, 1

p
+

1

q
=

1

r
+ 1,

1

p′
+

1

q′
=

1

r′
+ 1.

Then for the double convolution

h(x, t)
def
=

∫∫
RN×RM

k(x− ξ, t− τ)g(ξ, τ) dξdτ

we have
‖h‖r,r′ ≤ ‖k‖p,p′‖g‖q,q′ .

Proof. First of all, consider the convolution only in one variable, namely

(k ∗ g)(x) =

∫
RN

k(x− ξ)g(ξ) dξ,

where k ∈ Lp(RN ), g ∈ Lq(RN ), and 1
p + 1

q = 1
r + 1. We have

|(k ∗ g)(x)| =
∣∣∣∣∫

RN
k(x− ξ)g(ξ) dξ

∣∣∣∣
≤
∫
RN
|k(x− y)| · |g(ξ)| dξ

=

∫
RN
|k(x− ξ)|p/r|g(ξ)|q/r|k(x− ξ)|

r−p
r |g(ξ)|

r−q
r dξ.

If we apply Hölder’s inequality, we conclude that

|(k ∗ g)(x)| ≤
[∫

RN
|k(x− ξ)|p|g(ξ)|qdξ

]1/r

·

·
[∫

RN
||k(x− ξ)|p dξ

] r−p
rp
[∫

RN
|g(ξ)|q dξ

] r−q
rq

=

[∫
RN
|k(x− ξ)|p|g(ξ)|qdξ

]1/r

‖k‖
r−p
r

p ‖g‖
r−q
r

q .

Raising both sides to the power r yields

|(k ∗ g)(x)|r ≤
[∫

RN
|k(x− ξ)|p|g(ξ)|qdξ

]
‖k‖r−pp ‖g‖r−qq .

If we now integrate with respect to x, we have
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RN
|(k ∗ g)(x)|rdx ≤

∫
RN
|g(ξ)|q

[∫
RN
|k(x− ξ)|pdx

]
dξ

· ‖k‖r−pp ‖g‖r−qq

and we conclude that
‖k ∗ g‖r ≤ ‖k‖p‖g‖q. (16.1c)

The previous proof holds for any N ≥ 1; inequality (16.1c) is usually known as
Young’s inequality for the convolution. Now, we want to consider the double
convolution with respect to (x, t) ∈ RN × RM , namely

h(x, t) =

∫∫
RN×RM

k(x− ξ, t− τ)g(ξ, τ) dξdτ.

We have

‖h(t)‖r =

[∫
RN

∣∣∣∣∫∫
RN×RM

k(x− ξ, t− τ)g(ξ, τ) dξdτ

∣∣∣∣r dx]1/r

≤
[∫

RN

[∫
RM

∣∣∣∣∫
RN

k(x− ξ, t− τ)g(ξ, τ) dξ

∣∣∣∣ dτ]r dx]1/r

.

For simplicity, let us set for the moment∫
RN

k(x− ξ, t− τ)g(ξ, τ) dξ = f(x, t, τ).

Then, we have

‖h(t)‖r ≤
(∫

RN

[∫
RM
|f(x, t, τ)| dτ

]r
dx

)1/r

.

We can apply the continuous Minkowski inequality (see, for example, [6, Chap-
ter 6, Prop. 3.3]) to obtain

‖h(t)‖r ≤
∫
RM
‖f(x, t, τ)‖r dτ

=

∫
RM

∥∥∥∥∫
RN

k(x− ξ, t− τ)g(ξ, τ) dξ

∥∥∥∥
r

dτ

≤
∫
RM
‖k(t− τ)‖p‖g(τ)‖q dτ,

where we have taken (16.1c) into account. Let us momentarily set

u(t− τ) = ‖k(t− τ)‖p, v(τ) = ‖g(τ)‖q.

We can rewrite
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‖h(t)‖r ≤
∫
RM

u(t− τ)v(τ) dτ = (u ∗ v)(t).

Once more, by (16.1c) we conclude

‖h‖r,r′ =

(∫
RM
‖h(t)‖r

′

r dt

)1/r′

= ‖u ∗ v‖r′ ≤ ‖u‖p′‖v‖q′

=

(∫
RM
‖k(t− τ)‖p

′

p dt

)1/p′ (∫
RM
‖g(τ)‖q

′

q dτ

)1/q′

= ‖k‖p,p′‖g‖q,q′ .

Proposition 16.2c Let k ∈ Lp,p′(RN × R;R) and g ∈ Lq,q′(Ω × (t1, t2);R)
with N ≥ 1, Ω a bounded domain in RN , (t1, t2) ⊂ (0,∞), and

1 ≤ q ≤ r, 1 ≤ q′ ≤ r′, 1

p
+

1

q
=

1

r
+ 1,

1

p′
+

1

q′
=

1

r′
+ 1.

Then for the double convolution

h(x, t)
def
=

∫∫
Ω×(t1,t2)

k(x− ξ, t− τ)g(ξ, τ) dξdτ, (x, t) ∈ Ω × (t1, t2),

we have
‖h‖r,r′ ≤ ‖k‖p,p′‖g‖q,q′ .

Proof. Same as in Proposition 16.1c

20c Recovering the Pressure in the Time-Dependent
Equations

In Section 20 we study the regularity of the pressure p for weak solutions of
(8.1) in ET , where E is a bounded, smooth domain of R3.

In the whole space R3 the situation is definitely simpler, and we sketch how
the analogous corresponding result can be obtained. We follow an argument
given in [3].

If we take the divergence of (8.1), we obtain

∆p = −
3∑

i,j=1

∂2

∂xi∂xj
(vivj)

in the sense of distributions in R3 × (0, T ), and therefore, in R3 × {t} for a.e.
t ∈ (0, T ).

Here p is the sum of classical singular integral operators applied to vivj .
By the Calderón-Zygmund theory (see [47]), we have
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0

∫
R3

|p|q dxdt ≤ C(q)

∫ T

0

∫
R3

|v|2q, q ∈ (1,∞).

By the corresponding result in R3×(0, T ) of Lemma 8.1 we have v ∈ L 10
3 (R3×

(0, T )), and therefore we conclude that p ∈ L 5
3 (R3 × (0, T )).
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