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1

PHYSICS OF THE NAVIER-STOKES
EQUATIONS

1 Geometry of Deformations

A bounded open, connected set in E, C RY deforms in time to E in the
sense that points y € E, are in one-to-one correspondence with points x € E
through smooth, non-intersecting trajectories ¢ — x(t) such that z(0) = y
and z(t) = x. This defines a flow map and a velocity field

x=®(y,t), v(x,t) = (y,t). (1.1)

The functions &(-,t) may be regarded as a family of transformations defined
in E, and parametrized with ¢t. These transformations will be assumed to be
smooth and invertible independent of ¢. In the Lagrangian formalism, kine-
matic informations on z(t) € E are provided by the trajectories ¢t — x(t)
independently of their membership to E, as an open connected subset of RY
this bearing a role only in the determination of such paths ([17]). In the Eu-
lerian formalism, kinematic informations on points € E are provided by the
flow map &(-,t), which bears the “globality” of F, and E ([9, 10]). In both
formalisms these quantities must coincide. Therefore & = v(z,t) and

. d. 0 .
i=_d= av(w, t)+&-Vyv=Dyv (1.2)

where the operator D; formally defined by

0

is the total or material derivative along Lagrangian paths. For ¢ fixed, the
Jacobian of the transformation &(-,t) is

J(xt) = J[(y. )] = det (a@(y’“> — A, a@g;?’t)

51' )
8yj k



2 1 PHYSICS OF THE NAVIER-STOKES EQUATIONS

where A;; is the determinant of the algebraic complement of the (ij)th entry
of the Jacobian matrix V.

Here, and in the sequel of this first chapter, summation over repeated
indices is assumed.

Proposition 1.1 (Euler [9]) J, = Jdivv.

Proof. From the previous expression of J*

o) = & (B0 _ g, 0 00

ot 0y; Kl dy; Ot
81)1‘ 8vi 843k (y, ) 61)1'
J 8yj I 8$k 6yj aLL'Z‘ J

1.1 Incompressible Deformations

If an infinitesimal portion about any y € F, moves by possibly changing its
shape and/or configuration, but keeping fixed its infinitesimal volume, then
Jy = 0 and consequently div v = 0 and the deformation is called incompress-
ible. Vice versa, a deformation is incompressible if and only if divv = 0.

1.2 The Equation of Continuity

Let G C RY be open and let E(t) C G be a deforming sub-domain of G with
smooth boundary 0FE(t). For a smooth function (z,t) — p(z,t) defined in a
neighborhood of E(t), by the previous proposition

i L, Pl = / p(y, 1), 1)Tdy
t),t) J]dy

[pt + div(pv)] Jdy

d
-/, !
/ Vot )+ pdi]dy
-/,

= / [0 + div(pv)] dz.
E()

If p(z,t) is the material density of a body occupying the domain G, then for
every deforming subset E(t) C G

'The derivative of the determinant of N x N matrix is the sum of N determinants
obtained from the original matrix upon substitution of each row(column) by the
row(column) of the corresponding derivatives.



2 Cardinal Equations 3
/ p(z,t) dr = mass of the body in E(t).
E(t)

If elements of G evolve conserving their mass, then

i),
— x,t)dr =0
at o, p(z,t)

for all deforming sub-domains E(t) C G. Since E(t) C G is arbitrary, local
deformations of G preserve the mass if and only if

pt +div(pv) =0 pointwise in G.

This is the continuity equation and expresses conservation of mass.

2 Cardinal Equations

Whereas in the previous section we were working in RY with N > 2, now
we choose N = 3. Along the motion, points z € F C G are acted upon by
a material distributions of forces f(x, &, t)p(x,t)dx (f is a specific force, that
is, force per unit mass), and by reactions acting on OF due to the remaining
portion G — F which opposes the possible deformation of E. These are apriori
unknown, depend on the material structure of G, and should not depend
on the particular sub-domain £ C G. In the Cauchy formalism they are
represented by a smooth vector-valued function

G xS xR > (z,n,t) = T(z,n,t) € R?

where 5] is the unit sphere in R3. Then, assuming that OF is smooth, reaction
forces of G — F, acting on JF are described by

{reactions opposing deformations of EF} = T(z,n,t)do,

OF
where do is the surface measure on JF and n is the outward unit normal
to OF at x € OF. The component (T - n)n of T along n is the traction or
compression force, whereas the component T — (T - n)n tangent to OF at x is
the shear force. By d’Alembert principle the motion of any sub-domain £ C G
is a sequence of instantaneous equilibrium states, parameterized with time,
of all forces acting on that portion, including the reactions to deformation.
Thus,

/ [Z — f(x,d,t)|pde = T(xz,n,t)do, (2.1)

E OF

/ x A& —f(x,z,t)]pde :/ x A'T(z,n,t)do (2.2)
E OF

for all sub-domains F C G.
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Lemma 2.1 T(,,n,t) = —T(-, —n,t).

Proof. Fix P € G and n € S;. For 0 < €,0 < 1 consider the disc D.(P)
centered at P and radius ¢, normal to n, and the right cylinder Cs(P) of base
D.(P) and height §. Write (2.1) over Cs(P) and let 6 — 0 by keeping ¢ > 0
fixed, to obtain

/ T(z,n,t)do = —/ T(z,—n,t)do
D (P) D (P)

Divide both sides by |D.(P)| and let € — 0. [ |

3 The Stress Tensor and Cauchy’s Theorem

Having fixed a triad X = {O;ej,es,e3}, represent n € S; by its director
cosines n = (aq, ag, a3) with respect to the coordinate axes of X.

Theorem 3.1 (Cauchy). For alln = (a1, a3,a3) € S1
T('7n7t) =o; T ('7ei7t) :

Proof. Fix P € G and n € Sy and write down (2.1) where E is the tetrahedron
with vertex in P, height 0 < ¢ <« 1, base AABC normal to n, and faces
NAPB, ANBPC, ACPA, parallel to the coordinate planes. By setting Ac =
|AABC|, one has |E| = $eAo, and

|AAPB| = asAo, |ABPC|=a A0, |AAPC| = asAo.

For these choices, (2.1) takes the form

[li-t@aopi=[  Tennios [ Ta-ennd
B AABC ABPC

—|—/ T(ac,—eg,t)do—l—/ T (z,—es, t) do
AAPC AAPB

Dividing both sides by Ao, gives

€ 1
—_— T —f(z,z,t)|pde =————— T(xz,n,t)do
ey [, T ot =g [ T

aq
T (. —
T{ABPC] Jappe ¥ & Ter D
(6]
T (. —
TIAAPC] Jyppe T (ot do
as
_— T — .
+‘AAPB| AAPB (J}, e3,t)d0'

Let ¢ — 0 by keeping the vertex P of the tetrahedron fixed and the base
AABC normal to n. [ ]
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While computed at e;, the vectors T (-,e;,t), need not be directed along
the homologous coordinate axes. The components 7;;(-,t) = T (-, e;,t) - e;
of T (-, e;,t) along e;, define a matrix

Ti1 T12 T13
T = (Tij) = | T21 T22 T23
T31 T32 T33

called stress tensor. The entries 7;; are traction or compression stresses and
Tij, for i # j are shear stresses. The shear force acting on an infinitesimal
plane surface normal to e is Tp1€5 + 7T31€3. In general

{shear force relative to e;} = Z Tji€;.

J#i
Corollary 3.1 T(-,n,t) =T -n = (7;;)n.
Proof. From the definitions and Theorem 3.1
T(,n,t) =o;T(,ej,t) =a; [T(,e;t) ele;
T11 T12 T13 T11 T12 713 aq
=1 | To1 | tag| T2 | +asz| Te3 | = | To1 To2 To3 ag | =T -n.
T31 T32 733 T31 T32 T33 Qas

Corollary 3.2 Let G C R? be an open set identified with a material system
of density p(-,t), whose points x € G are in motion under the external force
density f(x,Z,t) and the internal stress tensor T. Then

[Z —f(x,2,t)]p=divT in G. (3.1)

Proof. Let E be any portion of G with smooth boundary 0F. By the Gauss-
Green theorem and Corollary 3.1

T(z,n,t)do = /

T-ndaz/ div T dzx,
OE E

oE

Therefore, (2.1) takes the form

/[i—f(x@,t)]pdx:/div Tdx
E E

for all sub-domains F C G.
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3.1 Symmetry of the Stress Tensor
Proposition 3.1 (7;;) = (755).

Proof. By the Gauss-Green theorem

/ x/\T(az,n,t)dJ:/ ThTijen N e do
OF OF

0
= [ — (mizn)en Ne;d
/E‘axj (Tz_yxh) h i AT
87’17'
= —>xpep N e;dr+ Tijdhjeh/\eidx

:/x/\didex—/Tijei/\ejdx
E E

Put this in the second cardinal equation (2.2) and take into account (3.1) to
obtain

/Tijei/\ejdl‘:/ [(To3 — T32) €1 + (731 — T13) €2 + (T12 — T21) €3] dz =0
E E

for all sub-domains F C G. [ |

3.2 Miscellaneous Remarks

The matrix T is intrinsic to the system and independent of its representations
in the following sense. Let X' = {O; €], €}, €5} be a new triad obtained by X
by a rotation of the coordinate axes realized by a unitary matrix U, so that
in particular e} = Ue;. By Corollary 3.1

Ti/j =T (.,e;,t) e} = (mr) Uej - Ue; = €! [Ut (Thi) U] e = [Ut (Thi) ULj .
The tensor T is a linear map in R whose matrix (7;;) is a representative. We
will call stress tensor both T and its matrix representations.

The unknowns of the motion are the trajectories ¢ — x(t) of the points
of G, the density function p(-,¢) and the 9 components 7;; of T. The second
cardinal equation (2.2), which amounts to 3 scalar equations, has been used
to establish the symmetry of T and thus reduce by 3 the unknowns of the
motions. The remaining first cardinal equation, in the pointwise form (3.1),
amounts to 3 scalar equations, which alone are insufficient to resolve the mo-
tion. One needs to provide additional information on the material structure
and on the tensorial state of the system both in the interior of G' and on
its boundary 0G. For example for rigid systems p = const, and the T is the
rigidity constraint.
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4 Perfect Fluids and Cardinal Equations

A fluid is a continuum material system, whose equilibrium configurations are
possible if and only if the stress tensor T is proportional to the identity I, that
is if
T(,n)=T-n=—p(-)n in steady state,

where p(+) is a smooth function defined in G, called pressure. This formula is a
mathematical rendering of the Pascal principle, by which the pressure in any
point of the fluid, exerts equal force by unit surface, in all directions ([34]).
This mathematical definition of fluid reflects the intuitive idea of a material
continuum system that does not oppose the mutual sliding of its ideal internal
layers. If in the fluid at rest the shear components of its stress tensor were not
zero, these would generate an incipient shearing of internal layers, since the
system does not have a mechanism to oppose it. Likewise, an ideal material
surface traced in the fluid at rest, remains in equilibrium only if acted upon by
forces normal to it. In a real fluid in motion, the kinematic viscosity generates
shear stresses that oppose layer sliding. Then real fluids are classified in more
viscous (oil, paraffin, etc.) and less viscous (alcohol, ether, gas, etc.) according
to the size of these shear stresses. A real fluid is ideal or perfect if the shear
stresses are negligible even in dynamic regime, that is if

T(,n,t)=T-n=—p(-,t)n in G and for all times. (4.1)
In such a case divT = —Vp(-,t) and (3.1) takes the form
plié —f(x,&,t)]+ Vp=0 in G for all ¢. (4.2)

Equation (4.1) is the constitutive law of ideal fluids and (4.2) are the cardinal
or the momentum equations of an ideal fluid.

5 Rotations and Deformations

Let v(+,t) be the velocity field generated by the flow map in (1.1) and assume
that the fluid at time ¢ undergoes an elemental rigid motion of characteristics
v (z,,1) and w, where z, is an arbitrary, but fixed point in the instantaneously
rigid fluid. By the Poisson formula

v(z,t) = v (2o, t) + wA (z — 20) .

Since the motion is instantaneously rigid, w does not depend on the variables
x of the generic point in the fluid. Taking the curl of both sides gives

curl v = (U3.0, = V2,25) €1 + (V1,25 — Us.0,) €2 F (V10, — V12p) €3 = 2w (5.1)

Therefore, curl v(z,t) gives, apart from the factor 2, the angular velocity of
the infinitesimal element of fluid about z, regarded as instantaneously rigid.
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For this reason curlv(-,t) is called vorticity field. If curlv(-,t) = 0 the field
is irrotational. If G is simply connected, an irrotational field is also potential,
that is there exists a function o(-,t) € C'(G), called kinetic potential, such
that v(-,t) = V(-,t). The flow is called potential, and the velocity field v(-,?)
is normal to the instantaneous equi-potential surfaces [p(-,t) = const(t)]. If
the velocity field is stationary, the kinetic potential is independent of ¢ and
the trajectories of the fluid particles are normal to the equi-potential surfaces.

Next expand v (-, t) in Taylor series about a point z, in the fluid, to obtain

v(z,t) = v(z,t) + [VV (20,t)] - (. — 20) + © (|x - x0|2) .
Therefore, up to terms of higher order
vi(x,t) = v (To, t) + Vie, (xj —Toy), ©=1,2,3.

For fixed indices 1, j

o 1 (%1- a’l}j 1 8’Ui avj o - -
'Uz,ﬂﬁj - 2 (83:J + 8a:z> + 2 (833] 8.%1) a DZ] +R”. (52)

The entries D;; e R;; define two tensors D and R. The first is symmetric
and is called deformation tensor. The second is skew-symmetric and is called
rotation tensor. With this notation, the previous Taylor expansion takes the
approximate form

v(z,t) = v (2o, t) + D (x —x) + R - (x — 20) . (5.3)

Consider an infinitesimal arc d (z — z,) within the fluid and along its motion,

of length df = \/d (x — x,)*. Then

d
%dﬁ =2d(x —x,) - d (& — i)
=d (CE,L' — zo,i) Ui,acjd (ZEj — ZEOJ‘)
=2d(x —x,)" - D-d(x—1x,).
Therefore, D tracks the deformations of infinitesimal lengths along the motion.
In a rigid motion lengths are preserved and D = 0. If D = Al then the

deformation occurs uniformly along the coordinate axes and the fluid expands
if A > 0 and contracts if A < 0. From the definition of R

1
R-(z—1z,) = §cur1v/\(x—mo) =wA(z—1x).
Hence, R gives the angular velocity of the system as if it were in instantaneous

rigid motion. These remarks and (5.3) suggest we regard the infinitesimal
motion of a fluid as the sum of
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1. an infinitesimal translation along v (z,, t);

an infinitesimal deformation along the coordinate axes;

3. an infinitesimal rigid rotation about the axis through x, and directed as
curl v (z,, t).

N

This is known as the Cauchy theorem.

6 Friction Tensor for Newtonian Viscous Fluids

In real fluids the friction generated by the mutual sliding of infinitesimal layers
generates shear forces that oppose the motion. The stress tensor T takes the
more general form

Tij = —D 5ij + 044, (61)

where o0;; are due to friction. Two infinitesimal layers slide over one another
if their velocity is different. Therefore o;; = 0;;(Vv) depend on the gradient
of the velocity. Moreover, o;; = 0 if Vv = 0. Assuming that ¢;;(-) are smooth
functions of their arguments, they can be expanded in Taylor’s series about
the origin of their arguments to give

90+
05 (VV) = ik, + 055 ([VVI?), - where  qijne = 7=
Uh,zy, Vv=0
for i,j = 1,2,3, where 0;;(-) are infinitesimal of higher order in |Vv|. A

fluid is Newtonian if (o;;) depends linearly on Vv so that the higher order
terms in the previous Taylor expansions are negligible. Water and alcohol are
Newtonian, whereas paints and gels are not.

The numbers 7;;p1 as the indices 4, j, h, k Tun over 1,2, 3, represent a 4th-
order tensor which quantifies the stresses due to the presence of internal fric-
tion in a fluid. By its physical nature such a tensor must be isotropic, that is
must be independent of rotations of the Cartesian system of its representation.

Lemma 6.1 Let (vijnx) for 4,5,h,k = 1,2,3 be a representation of an
isotropic tensor o. Then there exists numbers A\ and pq, o, such that

Yijhk = A0ijOnk + p10indjk + 20105

The lemma is established in § 8.2 Assuming it for the moment, it implies that
0;; must be of the form

Tij = A0ijVh,z), + [11Viz; + [2Va; -
Since (0;;) must also be symmetric (Proposition 3.1)

Tij = N0ijVh,ay, + f11V),2, + H2Vig; -

2A more general Stress-Deformation relation is due to Serrin [39].
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Adding these two expressions of o;; gives
1, .. 1_ 1, .. 1_
Oij = 5)\ leV6ij =+ i,u ('Ui,mj =+ vj,mi) = 5)\ leV(sij + iﬂpij,

where i = p1 + p2 and (D;;) is the deformation tensor introduced in (5.2).
This representation of the friction stress tensor in Newtonian fluids is due to
Stokes ([48]). If the fluid is also incompressible

1_
The constant %/Z is called the kinematic viscosity, and is determined experi-
mentally. By thermodynamics considerations i > 0 ([25] page 213, and [42],
Chapter V).

7 The Navier-Stokes Equations

A Newtonian, viscous, incompressible fluid moves in a domain G' C R3. The
momentum equations for such a fluid are those in (3.1). Taking into account
the form of the acceleration &, and the form (6.1)—(6.2) of the stress tensor
T, these equations take the form

1
[vi+(v-V)v—flp+Vp= iﬂdiv (Dij) = pAv + Vdivv
Therefore, since the fluid is incompressible

1
vtquv+(v~V)v+;Vp:f

divy =0 in G x RT, (7.1)

where = fi/p. We rename the constant p as the kinematic viscosity and its
physical dimensions are length-squared over time.

7.1 Conservation and Dissipation of Energy

Assume that there are no external forces, so that f = 0. Multiply (7.1) by v
and perform standard vector calculus operations, to get
1 > 1
DB = &+/LA§|V|2—MZ|VW|2 where B = §|v\2+8.
p P p

(7.2)

The term B is the specific energy of a material particle about x. Therefore,
the left-hand side of (7.2) is the material derivative of such a specific energy.
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The first term on the right-hand side is the time-variation of the internal
energy about x. The second term can be regarded as a dissipation of kinetic
energy due to viscosity. The last term is the energy dissipation due to the
rough mutual sliding of infinitesimal layers one over one another. Thus, the
variation of energy along Lagrangian paths is balanced by the time-variation
of the internal energy and the dissipation of energy due to viscosity.

7.2 Dimensionless Formulation, Reynolds Number and Similarities

The Navier-Stokes equations (7.1) are written in their physical dimensions. To
render them dimensionless select length and time units £ and 7 and introduce
dimensionless variables and quantities 3

Then (7.1) become

1
v, — =AV + (¥ -V)V + V' =1

R in G’ x R'*™ (7.3)
div'v =0
where
Rl _pt?
nwT nT

Here A, V' and div’ denote the analogous differential operations with respect
to the variables 2/, and G’ is the dimensionless description of G. The number
R is called Reynolds number. From the dimensions of y it follows that R is
dimensionless.

Two motions are similar if they take place in homothetic domains with the
same Reynolds number. Roughly speaking, the two domains have the same
geometry and are mutually rescaled by a given length scale. The length scale
being fixed then one rescales the time to obtain the same Reynolds number.
For example, in building a vessel one is interested in investigating apriori how
3 the shape of the hollow impacts on the motion of the surrounding fluid. One
builds a model vessel, to be used in a limited laboratory environment, of the
same shape but of reduced size, by rescaling the geometry by a fixed length.
Experiments are performed with such a model in the same fluid where the
vessel is intended to operate, so that the two fluids have the same viscosity.
Finally having fixed the length scale one introduces a new time scale so that
the Reynolds number remains the same. The two motions are then similar,
and experimental laboratory operations correspond to those of the real fluid
up to inverse length and time scales.

3Recall that f is a specific force, that is, force per unit mass.
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These remarks imply that the mathematical investigation of motions mod-
eled by the Navier-Strokes equations reduces to investigate (7.3) with R =1,
since space and time scales can always be chosen so that R = 1. Denoting
again by v, p, and f the indicated dimensionless quantities, and by A, V, div
the homologous operations with respect to the indicated, rescaled, dimension-
less variables, the mathematical problem consists in finding a velocity field v
defined in G x R, such that

—A Y Vp=f
Ve AV (V- V)V Vp in G x R,
divv =10 (7.4)
v(-,0) =v, inG fort=0.

Here v, is the initial velocity field defined in G and assumed to be known.
The determination of v hinges upon further information on its behavior on
the boundary of G. For example, since the fluid is viscous it adheres to the
boundary of its container G, so that v =0 on 0G. This is a Dirichlet datum
of v on OG. On the other hand, the container might be impermeable so that
no fluid outflows it at G, that is v-n = 0 on 9G for all times. This is
a Neumann datum of v on OG. These boundary information need not be
homogeneous or could be intertwined, so that for example a Dirichlet datum
is given on a portion 0;G of G and a Neumann datum is prescribed on the
remaining portion 0oG = dG — 01 G. Another kind of boundary condition will
be given in the introductory section of the next chapter. While the physical
formulation is simple, the corresponding mathematical problems are still not
well understood and are the object of current investigations, and will be dealt
with in the next Chapter.

8 Friction Tensor for Newtonian Viscous Fluids

8.1 Isotropic Tensors of the Fourth Order

Given a continuously differentiable velocity field v defined in R3, consider the
expression

8vh
Bxk ’

Tij = VijhkVne, Where ovpp = i,j,h,k=1,2,3. (8.1)
The nine numbers T;; are the representative entries of a tensor T of order 2,
with respect to a Cartesian triad X. Similarly (v;;n%) is the X-representative
of a 4th-order tensor I'. Let now X’ be a new Cartesian triad obtained from
X by a rotation, realized by a unitary matrix A : X — X’. The vector field
x — v(x) is transformed into

Yoy —V(y)=Av(ATy) (8.2)

and the representation of T in X’ is
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ov!

Thry = YemrsUrs,  where v)., = a—gr, Lm,r,s =1,2,3.
S
Using (8.2) compute
3Uh
Upy = ArnAsk7— = Arh AskUnk-
8xk

Therefore,
!
Tgm = Arh Askfylmrsvhk

The tensor T is isotropic if its action on vectors is independent of the reference
Cartesian triad, that is, if for all w € X

(Tij)w=A""(T};,) Aw, YweX.
Since w € X' is arbitrary
Tij = AvT)nAmy, 1,5 =1,2,3.
Using these representations, it follows that T is isotropic if
YijhkVhk = AeiAmj Arn AskYemrsVnk, 1,5 =1,2,3
for all unitary matrices A. This in turn implies
Vijhk = AviAm; Arn AskVemrs, 4,3,k =1,2,3. (8.3)

This is the condition for a 4th-order tensor I to be isotropic.

Proposition 8.1 Let I' be a 4th-order isotropic tensor. Then its representa-
tion with respect to a Cartesian triad X is

Vijhk = Aij0nk + p10in 0% + p20ik05n, (8.4)
where the constants A, u1 and ps are independent of 2.

Proof. In (8.3) take the rotation matrix

-1 00
A=1 0 -10
0 01

For such a choice, the entries in (8.3) are non-zero only if the quadruple ijhk
coincides with /mrs, and in such a case

Vijhk = AiiAjj Ann ArkYijhi-

From the structure of the matrix A above, one verifies that if in the quadru-
ple ijhk, the index 3 occurs an odd number of times, then vijnr = —7Vijnk-
Therefore,
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if in the quadruple ijhk the index 3

Yijhk = occurs an odd number of times.

Repeating the same arguments, for the choices of rotation matrices

10 0 10 0
A= o010 ], A=[0-10
00-1 00 —1

one concludes that

if in the quadruple ijhk anyone of the indices

Tijhk = 1,2, 3 occurs an odd number of times.

Therefore, the only non-zero elements are of the form
Yiihhs  Yihihs  Yihhi;
where repeated indices are not meant to be added. From (8.3) compute

Y1133 = A[lAmlATBASB’Ylmrs - 55m5rs'y£mrsa
Y2233 = AKQAmQAr3As37£mrs = 5€m5rs’Y€mrs~

Therefore, 1133 = 2233 and by symmetry
Y1122 = Y1133 = V2233 = V3311 = Y2211 = A.
If on the other hand all indices are equal, (8.3) gives the identity
Viiii = AtiAmiAriAsiVemrs = OtmrsYemrs = Yoooe, 1,0 =1,2,3.

Analogous considerations for the remaining terms imply that there exist con-
stants A, p1, po, 0 such that

Yiihh = A, Yihih = M1,  Vikhi = M2, Yz =0, foralli,h=1,2,3.
ih

Putting this in (8.3) gives

Yijhk = Z AZiAmjAT'hASkrYZst

indices of the form
ihh,

-+ Z AéiAmjArhAsk:’yZmrs

indices of the form
thih, 1

+ Z AgiAmjArhAsk’YEmrs

indices of the form
ihhi, i
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+ Z AgiAmjArhAsk'Yémrs

indices of the form
1441

= A0ijOnk + p10in0 % + p20ik0jn +600:50:1
i#£h
= X0i;Onk + f110:n0jk + p20ik0jn + [0 — (N 4+ w1 + p2)] dijnk-

To conclude the proof it will be shown that this form of the tensor (vijnk)
satisfies (8.3) for all unitary matrix A if and only if § = X\ + uq + po. Indeed,
from (8.3)

XOijOnk + p110in0jk + p2dindjn 4 [0 — (N4 p1 + p2)] dijnk
=Api A Arn Ak {N0tm0rs + 11100r0ms + 1120050 my

+ [0 — (N + p1 + p2)] dijnr }
=00k + p10indjk + 120ik0n + A Apmj Arn A [0 — (X + 1 + p2)] demrs

Therefore, the tensor on the left-hand side satisfies (8.3) for all unitary ma-
trices A if

[0 — (XN + w1+ p2)] (Sijnke — AviAmjArh AskOtmrs) =0

for all unitary matrices A. This is possible only if the coefficient independent
of the indices is zero. [ ]






2

ANALYSIS OF THE NAVIER-STOKES
EQUATIONS

1 Navier-Stokes Equations in Dimensionless Form

Let E be a physical open set in R? filled with a fluid of dynamic viscosity
and constant density p, whose infinitesimal ideal particles at x € E at time ¢
move with velocity v = (v1,vs2,v3) function of (z,t), and are acted upon by
the pressure (z,t) — p(z,t), and by possible external force densities f,(z, t),
per unit volume. Enforcing the local, pointwise conservation of momentum
along each of the ideal Lagrangian paths ¢t — x(t), yields the Navier-Stokes
system,

plve+ (v V)v] — pdev + Vp =f.

in E x (0,00). 1.1
div, v — 0 in E x (0,00) (1.1)

Here A,, V and div, denote the corresponding differential operation with
respect to the physical space variables x. If f. is conservative, such as for
example gravity, then f. = VF for some given potential F'. In such a case
(1.1) can be written in homogeneous form by redefining p as (p — F).

The various terms in (1.1) are written in terms of pre-chosen physical unit
length [L] and time [T'] and corresponding unit velocity [V] = [L][T]~!, unit
pressure [P] = p[V]?, unit force density [F] = p[V][T]~! and unit dynamic
viscosity [p] = p[V][L]. They can be written in dimensionless form by intro-
ducing dimensionless space variables y = z[L]™! and time 7 = ¢[T]~! and
corresponding dimensionless velocities, pressures and force densities

o VGIELTT) (T Rl IT)
V(y7T)_ [V} bl p(y7 ) [P] ? f [F] N

Denote by E the rescaled physical domain E expressed in terms of dimension-

less coordinates. Then, dividing (1.1) by p and formally by [V][T]~}, yields
€
Re

Ve Ay{’+ ({"vy){""vyﬁ: f in E~, (1.2)

divy, v=20
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where Re is the Reynolds number! of the system corresponding to the units
[L] and [T] and defined by

, def p[VI[Z]
L

While Re is dimensionless, its numerical value depends on the choice of [L] and
[T]. Indeed the dynamic viscosity p for a fluid of density p, is experimentally
determined in terms of some given units, say for example cm?sec™!. Expressing
them in terms of new units [L] and [T], changes the numerical value of Re.
The coefficient of A, in (1.2) is the dimensionless kinematic viscosity v of the
rescaled fluid.

This rescaling procedure is at the basis of predicting experimentally non
accessible fluid flows in large scale domains, such as air past an airfoil or water
past a vessel. The physical domains are rescaled to experimentally accessible
dimensions, such as laboratory water channels or wind tunnels, with properly
redefined Reynolds number. Information provided by the dimensionless system
(1.2) is then rescaled back to the physical domain.

To simplify the symbolism we continue to denote by z, ¢, v, p and f the
rescaled, dimensionless quantities and rewrite the Navier-Stokes system (1.1)
in the dimensionless domain F, for dimensionless times ¢ > 0 in the form

R

vi—VvAV4+ (v-V)v+Vp=f

Ex (0 1.3
e, i Ex(0.00), (1.3

with v = Re™*. Typically one prescribes the velocity field v, = v(-,0) at time
t=0and v(-,t) = g(-,t) on F for t > 0 and seeks to solve (1.3) subject to
these data.

If F is a rigid container at rest with respect to an inertial system, then OF
acts as a rigid wall and g = 0, by viscosity. This is the so-called no-slip condi-
tion. The case g # 0 may occur when JF is itself in motion with respect to an
inertial system. In the applications, other types of boundary conditions have
been considered. We talk of kinematic condition, when the normal component
of the velocity vanishes at the boundary, that is, the velocity v is tangent to
the boundary:

v(,t)rn=0 on OF

for t > 0, where n is the outward unit normal to the boundary OF. In
1823 Navier proposed a more general condition, namely the so-called Navier
boundary condition, which, roughly speaking, states that the tangential com-
ponent of the velocity is proportional to the tangential stress at the boundary.
We will not consider these different boundary conditions in the following.

The system (1.3) is formal since, even by prescribing smooth initial and
boundary data v, and g and forcing term f, one cannot apriori guarantee that
v and p are so regular as to give pointwise meaning to its various terms.

1Osborne Reynolds, 1842-1912, Irish-born physicist, gave important contribu-
tions to the understanding of fluid Dynamics.
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2 Steady State Flow with Homogeneous Boundary Data

Let E be a bounded domain in R? with boundary dE, and consider, formally,
the steady-state flow in E,

—VvAv+ (v-V)v+Vp={,
divv =0, in E. (2.1)
Vlop =0
Introduce the space of functions
V = {¢ € C°(E;R®?) such that dive =0 in E};
H = {closure of V in the norm of L*(E;R%)}; (2.2)
V = {closure of V in the norm of W,?(E;R?)}.

Formally inner-multiply the first of (2.1) by ¢ € V and integrate by parts in
E. Since v and ¢ are both divergence free, obtain formally

/[VVV:ch—v-(v-V)go—f-cp]da:zO (2.3)
E
where ‘

Vv:Ve = Z;:1ij -V;.

Here we have used the relation
[0 Veds=— [ (¢ Vigds
E E

valid for any triple of solenoidal vectors ¢, 1, ¢ € WH2(E;R3) such that at
least one of them is in V. As a consequence

/Eso-(C~V)<Pd93=0-

These calculus operations will be repeatedly used without specific mention.
By the Sobolev embedding Theorem applied with N = 3 and p = 2, there
exists a constant v independent of E and v, such that

Vil <vIVV]2 for all veV. (2.4)
Therefore, for all such v
IVls <AE[EIVVI: and  [[vila < y]E[72 V], (2.5)

As a consequence

1

- 2.6
vEF +1 (2:6)

Yollvlv < [IVvlla <|lvly where v, =
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for all v € V, where the rigorous definition of norm in V is given in (3.1)
below. By these inequalities, all terms in (2.3) are well defined for all ¢ € V
and f € L%(E;R3). Thus, having prescribed one such f, we define a weak
solution of (2.1) as a function v € V satisfying (2.3) for all ¢ € V. The
homogeneous boundary data on OF are taken in the sense of the membership
v € V. The same membership guarantees that divv = 0 in the weak form

/ v-Vpdr =0 for all p € C(E).
E

By this definition of solution, the choice ¢ = v is admissible in (2.3) yielding
the basic energy estimate

V[Vl < ylfle, (2.7)

to be satisfied by any weak solution to (2.1), where «y is the constant of the
embedding of V into LS(E;R3). Thus if f = 0 then v = 0 is the only weak
solution of (2.1).

2.1 Uniqueness of Solutions to (2.1)

Let v; and vy be weak solutions to (2.1) corresponding to the choice of f €
L5 (E;R?). Write (2.3) for v; and vy, subtract the expression so obtained and

in the resulting integral identity choose ¢ = w def (vi — v3), to obtain

v|[Vwl|3 = /E [vi-(w- - V)wW+w- (vo: V)w]|da
< (Ivalla + lIvalla) [wlla [ Vw]l2.

Since v, are solutions, combining (2.5) and (2.7) gives

2
1 Y 1
[wlla < ~[E[7= Vw2 and IVilla < —IEI[If]ls-

Therefore,
N2 i 2
IVwllo < 29(L) 1B 5 [Twll.

If the coefficient on the right-hand side is less than 1, then w = 0 and the
solution is unique. Such a coefficient depends on the absolute constant  of the
embedding V' C LS(E;R3), on the size of E, the viscosity v, and the nature of
the forcing term f. Given E and f uniqueness holds if the Reynolds number
of the system is sufficiently small or equivalently if the fluid is sufficiently
viscous.

It should be noted that the definition of weak solution does not depend
on the pressure p, which itself is an unknown to be found from (2.1).
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3 Existence of Solutions to (2.1)

The spaces H and V introduced in (2.2) are separable Hilbert spaces by the
inner products

H> (u,v)—> (u,v)g d:ef/Eu~de
(3.1)

V3 (uv)— (u,v)vdzef <u,v>H—|—/ Vu: Vvdzr.
B

By (2.6) the inner product (-,-)y is equivalent to
V3 (uv)—=(uv)y = / Vu: Vvdz = Z§:1<Vuj,ij>H,
B

which from now on we adopt. Having fixed f € Lg(E;]R3) and v € V|, return
to (2.3) and consider the two linear maps

V9g0—>d:ef/ £ pde
E
VBLp—>d=ef/ v (v V)edr.
E
By Hélder’s inequality and the embedding V' C LS(E;R3)

| [ £ pda] <l 17

Therefore, the first is a bounded linear functional on V. By the Riesz repre-
sentation theorem, there exists a unique F € V such that?

VB(p%/Eprdac:(F,(p)V.
Likewise, by the same embedding and (2.5)
| [ v (v Vopds] < RIER VBTl
Therefore, also the second map, for every fixed v € V is a bounded linear

functional in V. By the Riesz representation theorem, there exists a unique
B(v) € V such that

Vop— /Ev~ (v -V)pdr = (B(v),p)v.

With these identifications, the weak formulation (2.3) can be recast in the
form

2[7], Chap. TV, § 4
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Voe—=viv,p)y =(B(v)+F e
Equivalently, in functional form

v=DB(v) in V* where B(v)= %(B(V) +F), (3.2)

and V* denotes the dual of V identified with V itself up to an isometric
isomorphism. Thus, existence of weak solution to (2.1) in the sense of (2.3) is
equivalent to finding a fixed point of the map V 3 v — B(v) € V*.

Lemma 3.1 The map B(-) : V — V* is compact.

Proof. Since V and V* are separable metric spaces, compactness is equivalent
to sequential compactness. Let K be a bounded subset of V, i.e., there exists a
constant C' such that ||v||y < C for all v € K. The image B(K) is pre-compact
in V* if for every sequence {v,,} C K there exists a subsequence {v,/} C {v,}
such that {B(v,/)} is a Cauchy sequence in the operator topology of V*. By
the Rellich—Kondrachov compact embedding theorem, the embedding V' D
K — LP(E;R3) is compact for all 1 < p < 6. Therefore, having fixed 1 < p <
6, from every sequence {v, } C K one can extract a subsequence {v,/} C {v,}
which is Cauchy in the topology of LP(E;R?). Hence, to show B(K) is pre-
compact in V* it suffices to show that for every sequence {v,} C K, Cauchy
in L*(E;R3) the corresponding sequence {B(v,)} is Cauchy in the operator
topology of V*. Having fixed one such sequence {v,} C K, the action of
v[B(vy) — B(vy,)] on elements ¢ € V), is computed from

<V[B(Vn) - B(Vm)]v ‘P)V = /E[Vn : (Vn : V) —Vm - (Vm : V)](pdm

- /E (Vo = Vin) - (v - V)pda

—|—/ Vi - (Vi — Vi) - V)pdz
E
< (valla + vimlla) 1ve = vinllallellv
1
<AE[E ([Vallv + 1Villv) Ve = villallellv.
Hence

1B(vn) = B(vim)|

ve=sup ([B(vn)—B(vn).@)v
l@llv=1

< 29| E| % vy, — Vinl|a. m
Consider next the family of variants of (3.2)
v=AB(v) inV for Xe(0,1). (3.3)

If v is a solution of (3.3), it is also a solution of (2.3) with v replaced by v/A.
As such, the apriori estimates (2.6) and (2.7) remain in force with v replaced
by v and v replaced by v/, i.e.,
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1 A
Vally < —IVvallz < 2 gl
Yo V%o 5
Therefore, all possible solutions of (3.3) are uniformly bounded in A. Existence

of solutions of (3.2), and hence of (2.1), now follows from the Schauder-Leray
Fixed Point Theorem.

Theorem 3.1 (Schauder—Leray [28]). Let T be a continuous, compact
mapping from a Banach space {X;||-||x} into itself, such that all possible
solutions of x = AT (x) are equi-bounded uniformly in A € (0,1). Then T has
a fixed point.

4 Non-Homogeneous Boundary Data

Let E be a simply connected, bounded domain in R® with boundary OF
of class C! and satisfying the segment property and consider, formally, the
steady-state flow in F,

—VvAV+ (v-V)v+Vp =T,
divv=0, in E (4.1)

V=2
where a is a vector valued function defined on JF, whose regularity will be
specified as we proceed. If v is a solution of (4.1) then, formally, by Green’s

theorem,
0:/ divvdx:/ a-ndo, (4.2)
E OE

where n is the outward unit normal to JF. This is then a necessary condition
to be imposed on a for the solvability of (4.1). Solvability of (4.1) hinges on
extending a with a divergence free vector valued function b defined in E. The
smoothness of b and the meaning of b = a on OF will be made precise as we
proceed. Assuming that such an extension can be found, seek a solution to
(4.1) in the form v = b + u, where formally

—vAu+ (u-Viju+ (b-V)u+ (u-V)b+Vp=g,
diva=0, in B,  (43)

u|aE:O

and
g=f+vAb— (b-V)b. (4.4)

Solutions of (4.3) are sought in V' with the equation being interpreted in its
weak form
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V/Vu : Vepdr
E (4.5)
:/{[u-(u~V)+u-(b-V)+b-(u-V)]cp+g-cp}dx
E
for all ¢ € V. Taking ¢ = u gives the apriori estimate
(v = A1E(® [bll) [Ful < \ [ gud. (46)
E

where 7 is the constant of the embedding of V' into L(FE;R3). The right-hand
is finite if f € L5 (B;R3) and b € W12(E; R3), since by the Sobolev-Nikol’skii
embedding theorem, this implies b € L(F;R?). Indeed,

/g-udw
E

where again « is the constant of the embedding of V into L°(E;R3).

If the domain E has boundary OF of class C! and satisfies in addition
the segment property, functions b € W12(E;R?) have traces on OF in the
fractional Sobolev space

< [YIElg +vI9Bllz + [BI3] [ Vull, (4.7)

b|,,=ac W (9E;R?). (4.8)
Henceforth given a boundary datum a € W%’Q(GE;R?’), we assume it can
be extended into a solenoidal vector field b € W12(E;R3). A compatibility
condition for such an extension to exist is that a has zero flux across OF as
indicated by (4.2). We also assume that such an extension can be constructed
to satisfy .

AEI by < Lv. (4.9)

The actual construction of an extension b satisfying (4.8) is carried out in Sec-
tion 4.2¢ of the Complements. Moreover, we assume that (4.9) can be derived
from (4.7¢). Accepting it for the moment, this last requirement combined with
(4.6)—(4.7) yields the apriori estimate

2y
IVullz < =* [IElls + v Vb]lz + Ib]13] (4.10)

to be satisfied by any weak solution to (4.1).

4.1 Uniqueness of Solutions to (4.1)

If uy and ug in V solve (4.1) write their weak formulations (4.5), subtract
them out and in the integral identity so obtained take the testing function

p = (u —uy) def w, and make use of the embedding (2.5) and the upper
bound (4.10) to be satisfied by all weak solutions to (4.1), to obtain
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%/ [ (w-V)w+w:(uz-V)w+b-(w-V)w|dz
E

Vw3
1
< = (lwilla + Juglla + [Bla) [wlla]| Vo
Vimd (47 s 2 5
< 21B[% (41 1B [l£llg + vIVbllo + [BIZ] + Iblla ) Vw3

If the coefficient of |[Vw|3 on the right-hand side does not exceed 1 then
w = 0 and the problem admits at most one solution. The uniqueness condition
hinges on several factors including |E| and the size of the extension b through
the norms ||Vb||z and ||b||4. The key condition however is expressed by the
smallness of the Reynolds number Re = v~!. Thus uniqueness holds if the
Reynolds number is sufficiently small or equivalently if the fluid is sufficiently
viscous.

4.2 Existence of Solutions to (4.1)

Consider the linear maps

V9go—>d:ef/g~goda:
E
Vago%d:ef/ [u-(u-V)+u-(b-V)+b-(u-V)|pda.
E
Estimate

| [ & wde] < v {815 +vIVbla + IB1F] [Vl

Therefore, the first is a bounded linear functional in V. By the Riesz repre-
sentation theorem there exists a unique G € V such that

VBQD—)/Eg-goda:: (G, p)v.
Likewise, estimate
‘/E[u~(UoV)Jru'(b~V)+b'(u~V)]<pdz‘
< |B[% (1[BI% [Vulls +2|blls) [Vull2 [ Vo],
where 7 is the constant of the embedding L (E;R3) C V. Therefore, also the

second map is a bounded linear functional in V. By the Riesz representation
theorem?® there exists B(u) € V, such that

3[7], Chap. TV, § 4
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[ a9 tus (b V)b (u- Vo ds = (B, ).
E
With these identifications the weak form (4.5) reads

V3e—=v(ue)y = (Bu)+G ey

Equivalently, in functional form
_ _ 1 -
u=5(u) in V" where B(u)= > (B(u) + G) (4.11)

where, as before, VV* denotes the dual of V identified with V itself up to an
isometric isomorphism. Thus, existence of weak solution to (4.1) in the sense
of (4.5) is equivalent to finding a fixed point of the map V 3 u — B(u) € V*.

Lemma 4.1 The map B(-) : V — V* is compact.

The proof is analogous to that of Lemma 3.1 with minor changes. Consider
next the family of variants of (4.11)

u=M3(u) inV for Ae€(0,1). (4.12)

If uy is a solution of (4.12), it is also a solution of (4.5) with v replaced by
v/A. As such, the apriori estimate (4.10) remains in force with u replaced by
uy and v replaced by v/, i.e.,

1 A
lually < —[IVunlls < 22 L [|1f¢ + 2| Vb]o + [bl3] .
Yo V%Yo °

Therefore, all possible solutions of (4.12) are uniformly bounded in A. Exis-
tence of solutions of (4.11), and hence of (4.1), now follows from the Schauder—
Leray Fixed Point Theorem 3.1.

5 Recovering the Pressure

Return to the steady-state Navier-Stokes system (2.1) in its weak form (2.3).
Existence of solutions to such a system has been established in Section 3
irrespective of the pressure p appearing in the formal pointwise form (2.1).
Assume momentarily that

v e W2(E;R?) and f € L*(E;R®). (5.1)
Then (2.3) by back-integration by parts yields

/ (NS)-pdx =0 where (NS)=-vAv+ (v-V)v-f
E

for all ¢ € V. Since (NS) € L?(E;R3?) this continues to hold for all ¢ € H.
Therefore, (NS) € HL. Introduce the space of functions

G collection of ¢ € L*(E;R?) of the form
N @ = Vp for some p € Wh2(E)
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Proposition 5.1 (Helmholtz-Weyl Decomposition [54]) Let E C R?
be open, bounded and convex. Then G = H* or equivalently

L*(E;R*) = H & G.

Indeed, Proposition 5.1 is a special case of the Helmholtz-Weyl decomposition;
its proof will be given in Section 5¢ of the Complements.

The system (2.1), as such, does not provide sufficient information to de-
termine the pressure p. However, its weak formulation (2.3) permits one to
assert that the principal part (NS) of the Navier-Stokes system has, at least
under the regularity assumptions (5.1) on v and f, and locally in E, the
form of a gradient of some pressure p € VVli)C2 (E). This follows by applying
Proposition 5.1 to open, convex subsets of F.

6 Steady State Flows in Unbounded Domains

Let E be an unbounded, open set in R? filled with a fluid of dynamic viscosity
1. The problem is particularly interesting from the physical point of view if
FE is an exterior domain, that is, the complement of a bounded set; such a
situation can then be used to model the motion of a rigid body through a
viscous fluid, or the flow past an obstacle (see also [15, Chapter 1, § 2] for
more details).

The domain E will be assumed to be open and simply connected, with
boundary OF of class C', and satisfying the segment property. The fluid
velocity v is assumed to take the value a on OF, for a vector field a whose
regularity will be specified as we proceed, and to approach a constant vector
Ao as |z| = oo. The fluid is stirred in its interior by a forcing term f whose
properties are to be defined. Consider formally the steady state flow in FE,

—vAv+ (v-V)v+Vp=H{,

divv =0,
— in & 6.1
v ’E)E =a, (6.1)
lim v(z) = a.

|z]—o0
Notice that, in general, (4.2) is no longer a necessary condition on a for the

solvability of (6.1), even if as, = 0.

6.1 Assumptions on a and f

It is assumed that the boundary datum a € W22(9E;R3) can be extended
into a solenoidal b € W;-:2 (E;R?), satisfying

loc
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b=a on dF as traces of functions in W'?(E;R?),

b —a, € L*(E;R?),

" u (6.2)
b(z) —as| < ——2—, and |Vb|< — — inE,
2
V1+[7]2 1+ |z

for two given constants M, and M. For exterior domains and smooth a with
zero flux on OF, such an extension can always be realized. Indeed we have the
following.

Proposition 6.1 Let E be an exterior domain, complement of a bounded,
simply connected domain E¢ = R3\E. Then any a € C?(OE;R3) satisfying
(4-2) admits a solenoidal extension b € C?(R3;R3) satisfying (6.2).

Proof. For § > 0, consider the set Es = [dist(-,0F) < §] and construct the
vector field ¥, € C3(R3;R3) corresponding to a, compactly supported in Es,
such that the solenoidal extension b, of a is realized by b, = curle. Such a
construction is guaranteed by Proposition 4.3c of the Complements.

Let R > 1 be sufficiently large, such that Bgr_1 D E°, and set

b' = curl [(#3000,2, T1000,3, T2000,1) (], (6.3)

where
1 outside a ball of radius R,

¢ = ¢ 0 inside a ball of radius R —1,
smooth, 0 < ( <1 otherwise.

Finally, let b(z) = ba(z) +b’(x). One verifies that such a b is solenoidal, and
satisfies the requirements (6.2). [ |

For general vector fields with the regularity assumed in (6.2), again one
relies on Proposition 4.3c of the Complements for the construction of by,
whereas b’ is built as in (6.3).

By the previous construction, it is also apparent that supp Vb is a compact
set in R3.

The forcing term f is taken in L
as |z| — oo, in the sense

2
loc

(E;R3) and decreasing sufficiently fast

lz| f € L*(E;R3). (6.4)

6.2 Towards a Notion of Solution to (6.1)

Proceeding as in the case of bounded domains, solutions are sought of the
form v = b + u, for some u € V, where formally u satisfies (4.3)-(4.5), the
latter holding for all ¢p € V. The membership u € V provides weak forms of
the last two conditions in (6.1), whereas (4.5) interprets weakly the Navier-
Stokes system. The next step is in deriving apriori estimates for u, by taking
@ =uin (4.5).
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For bounded domains F, the inner product (-,-)y introduced in (3.1) is
equivalent to the inner product (V-,V-)g. This follows from the embedding
inequalities (2.5)-(2.6). If E' is unbounded this is, in general, no longer the case
and the topology generated by (-,-)y cannot be related to the norm ||V - ||2.
Nevertheless the first of (2.5) has a weaker counterpart in V.

Proposition 6.2 Let u € V and 0 € R3\ suppu. Then

u/? 2
—sdr <4 [ |Vu|dz (6.5)
E |zl B

Proof. Since u has vanishing trace on OF, by extending it with zero outside
E, regard u as an element of V in R3. Assume momentarily that u € V, and
for € € (0,1) compute and estimate

uf? 2
—=dr = (Aln |z|)|ul*dx
2
e<|z|<e1 |‘T| e<|z|<e?
X
T

:/ v1n|x|-i|u|2do——/ Vinjz| - - u?do
|z|=e—1 |z|=¢

|| ||

e T,
e<|z|<et |$| |.13‘

Letting € — 0 gives

2 2 1 1
/ %dxg/ P e < (4/ %dx)(/ VuPdr)”.
E |7l B |7l E |7l E
which yields (6.5). The proof is then concluded by density. ]

Notice that in the proof it is not used that u is solenoidal.

7 Existence of Solutions to (6.1)

7.1 Approximating Solutions and Apriori Estimates

For n > diam(E*°) let B,, be the ball of radius n about the origin of R?, set
E, = ENB,, and let V,, and V,, be the spaces introduced in (2.2) for E,,.
In each F,, we consider the problem
—VvAvV, + (V- V)v, + Vp =1,
divv, =0,

Vi ‘OE =a,
Vn ’aBn =b ‘613” :

Let v,, = b 4+ u,,, where u,, € V,, is a weak solution in FE,, of
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—vAu, + (u, - V)u, + (b-V)u, + (u, - V)b+ Vp =g,

divu, =0, (7.1)
7.1
Wy [op =0,
Un |aBn =0,

where g = f +vAb — (b - V)b. Since E,, is bounded, such a u,, exists, by the
construction in Section 4.

Proposition 7.1 Let u, € V, be a solution of (7.1) in E,, with b and f
satisfying (6.2) and (6.4) respectively. Then either of these apriori estimates
holds, uniformly in n

(V - 2M0)||Vun”2 def

< = |||z|f]|2 + T(CTME + v M), (7.2)
(v —4M)) |V, |2~ ® !

where C' > 0 is a constant that depends on § and R, introduced in the proof
of Proposition 6.1.

Proof. Since u,, € V,,, it can be regarded as u,, € V, by extending it to
be zero outside E,,. Likewise, the test function ¢ € V,, is regarded as in V.
Insert ¢ = u in the weak formulation of (7.1), and transform and estimate
the various terms by using the assumptions (6.4) on f and (6.2) on b. In this
process we use the elementary calculation

/ dx 9
— s =T
rs (14 [2[?)?

1// Vu, : Vu, dr S‘/ un~(b~V)undx’
E, Ey,
_|_

We have

/ u, - (u, - V)bdaz‘
E,

n / f-unda:‘

E,
+ 1// Ab-undx‘
By,

+ / (b~V)b-undx‘.
Ey,

The various terms above are transformed and estimated as follows:
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‘/ £ou, da| < lJolf]lz]llx[ ™ a2 < 2f|2|f]l2]| Vg [
En
‘/ VAb -y dz| < V|Vl Vunlls < vMyr | Vi s;
En

u, - (b-V)u,dz| =0 since b is solenoidal;

n

J,
E
/.

n E7I,

u, - (u, - V)bdz| = / un-(un-V)(b—aoo—i-aoo)d:E‘
ETI,

n

< /En u, - (un-V)(b—aoo)d:E‘

< / u, - (u, - V)(b—aoo)dx’
R3

_ / (b—as) - (u, - V)u, d|
s

< MO/ 2~ [ | Vp | < 20, |V |2:
E

‘/E un-(b-V)bd:c‘:‘[Emsuppw)un-(b~V)bdx‘

:‘/ b-(b~V)u"d:z:’
E,Nsupp Vb

< ||b||421,EnﬁsuppVb”vu”HQ,EnﬂsuppVb
< C(8, R)[|Vbl[3[Vunll2, 5, supp vb
< C(3, R)||Vb|3[Vuy|2

= C(6, R) M| Vu, 2.

Combining these calculations proves (7.2). [ |

The proposition provides an apriori estimate for [|[Vu,||2, independent of n if
either M, or M; are sufficiently small. In what follows assume

max{2M,;4M;} <v and set v —max{2M,;4M;} =a > 0. (7.3)
For unbounded FE, introduce the space
‘H = {completion of V in the norm || - || = ||V - [|2}.

This is a separable Hilbert space by the inner product (-, )y = (V:,V-)g. By
construction V' C H, as elements in H are not required to be in L?(E;R3).
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7.2 The Limiting Process

If (7.3) holds, then {u,} is a sequence bounded in H, and hence weakly pre-
compact in the same space. Every element u in the weak closure of {u,}
is a weak solution of (4.5) in the following sense. First u € H* and hence
u € H by the Riesz identification map. Next, having fixed ¢ € V, let F' be its
support and consider the sequence {u,|r} of restrictions of u,, to F. Since F'
is bounded, by the embedding inequalities (2.5)-(2.6), the norm ||V - ||2,F is
equivalent to the norm of W12(F;R3). Therefore, there exists a constant C,
depending on F', such that

lun|rllwiz(prsy < C  uniformly in n.

By the Rellich-Kondrachov compact embedding theorem, the embedding
Wh2(F;R3) — LP(F;R3) is compact for all 1 < p < 6. Therefore, a sub-
sequence {u,/|r} C {u,|r} can be selected so that

{u,} = u  weakly in WH?(F;R?), and

7.4
{u,} - u strongly in L"(F;R?). 74

Theorem 7.1. Let (6.2), (6.3) and (7.8) hold. Then (4.5) admits a solution
u € H satisfying

V/EVu:chdz::/E{[u-(u~V)+u-(va)+b-(u-V)]goJrg-go}dx (7.5)

forallpeV.

Proof. Let u € H be in the closure of {u,} in the weak topology of H. Write
down (4.5) for u,, over E, for ¢, € V,. Having fixed ¢ € V, let F be its
support and let ng be so large that F' CC B, for all n > np. Then for such ¢
fixed, (4.5) will hold for all n > np. Letting n — oo along proper subsequences
depending of ¢ satisfying (7.4) establishes (7.5) ]

Remark 7.1 Notice that the indicated limiting process can be carried out
for a fixed ¢ of compact support and not for ¢ € V. Thus (7.5) holds only for
¢ € V and, in general, not for ¢ € V. Once u in the weak closure of {u, } has
been identified, the choice of subsequences for which (7.4) holds depends on
the selected testing function ¢. However, the limiting identity (7.5) continues
to hold for all ¢ € V. Also, for unbounded E, solutions are found in H and
in general not in V.

8 Time-Dependent Navier-Stokes Equations in Bounded
Domains

Continue to denote by E C R? an open, bounded set with boundary dF of
class C' and satisfying the segment property. For 0 < T < oo, let Ep =
E x (0,T), and introduce the spaces
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L*(0,T;V) = {v(-,t) € V for a.e. t € (0,T) with finite norm ||Vv||2.z,};
W {v(-,t) € V for a.e. t € (0,T) with finite norm}

HV”%/V = €ssSup(g, 1) ||V(at)||§E + HVVH%;ET

C>=(0,T;V) = {¢ € C=(Er;R*) with (-, t) € V for all t € (0,T)}.
For these spaces the operations of V and div are meant weakly and with
respect to the space variables only. Functions ¢ € C*°(0,T'; V) are divergence

free and of compact support in F, in the space variables, but are permitted
not to vanish for t =0 or for t =T

Lemma 8.1 Let v e W. Then v € L's (Er;R3) and
3
Vil m, <RV

where 7 is the constant of the embedding of V into L°(E;R3).

T 10 T 4
/ /\vﬁd;pdt:/ /|v|§|v|2dxdt
0 E 0 E
4 :
< v|2dz / v|8dx) ” dt
/O ([E| pa) ([ 1vloas)
4 T

< (esssup v lae)” [ w0l st
(0,T) 0

Proof.

22
< 7lvil
The last inequality follows from the embedding (2.4). ]

Consider a viscous fluid of Reynolds number v~ ! filling a rigid, still container
E and stirred by a forcing term f. Its time evolution over (0,7) is modeled,
formally, by the system

vi —VAV+ (v-V)v+Vp=1f in Er;
divv = 0;

V('at) |8E :07
v(,0)=v, in E.

(8.1)

The homogeneous boundary condition for the velocity v, also called no-slip
condition, says that at the boundary, the fluid will have zero velocity with
respect to the same boundary.

Multiply the first of these, formally, by ¢ € C°°(0,T;V) and integrate by
parts over E; for t € (0,7T]. Using that divv = 0 gives
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/Ev(t) ~p(t)dx — /Ot/EV -~ dxdr

+ /0 /E (Vv : Ve + (v-V)v-p)dzdr (8:2)

¢
:/vo~cp(0)dac+/ /prdxdT.
E 0o JE

Assuming momentarily that v € C*(0,T;V) take ¢ = v and observe that
the non-linear term gives, formally, zero contribution. Using also Lemma 8.1
yields the formal energy inequality

esssup||[v(1)[3, + 20 VI3, g,
(0,T)

T
<lvilp+2 | [ £ovao 5

< IVoll3.g + 2lfll2sE, IV
< |IVoll}p +2VT|E

|2; 57

2;57 €S sup ||V (- 1) |2
(0.1)

In what follows, the set of parameters {v,T, |E|, ||Vo|l2:&, ||f]|2;5,} are the
given data and we will denote by v a generic positive constant that can be
determined quantitatively, apriori only in terms of these. With this notation,
by a standard application of the Cauchy-Schwarz inequality, (8.3) implies

%Er)- (8.4)

These formal remarks suggest we define a weak solution to (8.1) as an element
of W satisfying (8.2) for all ¢ € C*°(0,T;V), and the energy estimate (8.4).
The membership v(-,t) € V for a.e. t € (0,T) gives meaning, in the sense
of traces, to the homogeneous boundary data on OF. The same membership
insures that divv = 0 weakly in Ep. As for the initial data, observe that, for
solutions in this class, all integrals in (8.2) are well defined. As a consequence,
by Vitali’s absolute continuity of the integral, all integrals extended over F;
tend to zero as t — 0. Therefore,

HV”W < 'V(HVOHQ;E + Hf

lim [ v(t)-p(t)dz = / v, - p(0)dx  for all ¢ € C(0,T;V).
t—=0 /g E

Thus the initial datum v, is taken in the sense of such a weak continuity of

v(+,t) in L2(E;R3). The same continuity also implies that div v, = 0 weakly

in E. The latter emerges then as a compatibility condition to be imposed on

the initial datum v, for a solution to exist.

Theorem 8.1 (Hopf [20]). Let f € L?(Er;R?) and let v, € L*(E;R?) be
weakly divergence free in E. Then there erists a weak solution to (8.1).

Remark 8.1 In the following we refer to such a solution as Hopf’s solution.
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9 The Galerkin Approximations

Let e = (e1,...,€n,...) be a complete system for V. Since V is dense in V,
by sequential selection and Zorn’s lemma, the elements e; can be chosen in
V. Also by sequential orthonormalization, while not necessarily orthonormal
with respect to the inner product (-, )y defined in (3.1), they can be chosen
to be orthonormal in L?(E;R3), i.e., (e;,€;) g = &;;. Write a possible solution
in the form
n
v=v,+V., where v,=> c¢j(t)e; and v,,= > c¢j(t)e; (9.1)
j=1 i>n

for scalar functions (0,7) 3 t — ¢;(t). The remainder v, ,, of the series satisfies

24+ |VVenlls = 0 as n— oo.

HVTA,nH%/ = ||Vr,n

Since (e1,...,€,,...)is complete in V, it is also complete in L?(E;RR?). There-
fore, by the indicated orthonormalization in L?(E;R3) and Parseval’s identity

IVl3e =2 <.
jz1
Write v in (8.2) in the form (9.1) and observe that the terms involving v, ,
tend to zero as n — oo. This suggests defining an approximate solution to
(8.1) as a function v,, € C*(0,T;V), with v,, = > | ¢,, ;€;, satisfying (8.2)
for p =¢;, foralli=1,...,n, ie.,

T L sym
/ [C;” + > Cn,j{/ vVe; : Veidw}
0 j=1 E ij
kew
_ de/ £ - eidz|dr = 0.
J E

n . (9.2)
" 321 Cn’j{ /E e (vn- V)ejdx}

1,

For fixed n € N the terms A7}™ = {--- };7™" define the entries of a n x n time

independent symmetric matrix A’Y™, whereas the terms Aj;-‘ew = {... Jshew

ij
define the entries of a n x n skew symmetric matrix AS<" linearly dependent
on the time dependent vector ¢, = (¢p1,--.,Cn,n). The last term defines a

vector £, = (f1,..., fn) dependent on ¢. Set also
Co,i = / Vo € dl‘, Co = (00,17 B Co,n)7 Cn<0) = Co.
E

Requiring that the integrand over (0,7') in (9.2) vanishes identically, gives the
differential system in c,

n
it D (AT + AXY)e, = fi with €,,:(0) = co. (9.3)
j=1

Unique solvability of this system hinges upon some apriori estimates which
we derive next.
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Proposition 9.1 Letc, = (cp1,...,Cnn) be a solution to (9.3) and set v,, =
2?21071,71372- There is a constant vy depending only on the data and independent
of n and i, such that

essst;p len,i ()] < ;s (9.4)

)

len,i(te) — cni(t)] <Y1+ [|Veilloom)ViEa —
for all (t1,t2) C (0, 7).

Proof. Multiply (9.3) by c¢,4, add over ¢ = 1,...,n, and observe that
ch Askeve, = (), where ¢!, denotes the transpose of the vector c,. This gives

1d 2

n n
—— 3 cii + 1// V> cnje VY cpieide
2dt iz " E  j=1 i=1

=S deni < (507) (£ ) = 1l lva®las

Equivalently

5 IVa®36 + vIVVa ()36 < IOz 1va(®)ll25-
To prove the first of (9.4), integrate this over (0,¢) C (0,T) to get

esssup ||V (1) 3.2 + 20 Vv 3.,

)

< ”VOH§;E + Qﬁnan?;E’T e?g 57};1’ Ve () ll2;22-

The proof is concluded by a standard application of Cauchy-Schwarz inequal-
ity in the last term. The second of (9.4) follows from this and Parseval’s
identity. To prove the last of (9.4), return to (9.3) and, for fixed i € {1,...,n},
estimate

|c;”| < 1/‘/ Vv, : Ve; dac‘ + ’ / (Vi - V)e; - v dx‘ —|—/ If| dx
E E E
SI// |an||Vei|dx+/ |vn|2|Vei\d:v+/ |f| dx
E E E
<vVedlwie [ [V¥nlde+ [Veillasr [ val*do+ [ [£lds
E E E
1
<v[|Veilloo; || VVn(t) |2 B2 + HVeiHoo;E(e?SSl;p |\Vn(t)||§;E)
0,T

1
+ B [£(@)]2:m
1 1
<lIVeilloo; (VIEI 2 Vvn(®)llee + ess sup an(t)Hg;E) + B2 [[£()]2: -
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Integrating over (t1,t2) C (0,7T) and using the first of (9.4) gives

ta
|
ty

to
enslta) — enstt)] <] [ uoie] < [l ol
t1

L[ 3
<vVeilwrlEE [ ([ [9vado) de
t1 E

+ [ Veill oo ess sup [|vi (8|13, (£2 — t1)
(0,7)

)

e }
+|E\f/ (/ |f|2dx) dt
t1 E
<A, T, |E|, [[Vollz, Ifll2;2r ) (1 + [ Veilloo)VEa —t1. B

Existence and uniqueness of solutions to (9.3) can be established in the small,
for example by a contraction fixed point argument. Then the solution can be
continued in the whole (0,7T), so long as it remains bounded. Such a bound,
independent of ¢, n and i, is insured by the second of (9.4).

10 Selecting Subsequences Strongly Convergent in
L? (ET; R3)

It follows from Proposition 9.1 that for fixed j € N the sequences {c, ;}5%;
are equibounded and equicontinuous, so that by the Ascoli-Arzela theorem

a subsequence {c,, ;} C {cn j}nz; can be selected converging to some c;
uniformly in (0,7"). By the Cantor diagonalization procedure a further subse-
quence can be selected and relabelled with n, such that {c, ;} — ¢; uniformly
in [0,7]. However, it should be noted that, because of the last of (9.4), the
rate of convergence depends on the index j. Set formally

o0
VvV = Z cje;.
7j=1

Proposition 10.1 For the same constant 7y as in the first of (9.4) there holds

esssup [|[v(, O)ll2.e + [[VV2.e, < 7.

Moreover {v,(-,t)} = v(-,t) weakly in L*(E;R3), uniformly in t € (0,T).
Proof. For a fixed positive integer k and all n

k

k k k
SOESDIOEDWERO| Ep A
j=1 j=1 j=1 j=1
k
< 310 - 50 + Va5

Jj=1
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By the first of (9.4) the last term is bounded by a constant v depending only
upon the data and independent of ¢t and n. Letting n — oo the first term in
the right-hand side tends to zero by the uniform convergence of {c, ;} — ¢;

for j =1,...,k. Thus Z?zlc?(t) < . Since k is arbitrary, the series Zlec?
converges to [|v(, t)||§E and esssup g 1y [[V(+,t)[|2;2 < . To prove the second
statement, fix k € N and take first a function of the form ¢ = Z?:ﬂ’j e;. For

such a function, by the othonormality of (ey,...,en,...)

k
/(vn—v)-cpdax: Yo(enj—c¢i)p; — 0 as n— oo
E j=1

by the uniform convergence of {c, ;} — ¢; for j = 1,... k. For a general
¢ = > pje; € L*(E;R?), having fixed ¢ > 0, there exists k., depending on
and ¢, such that Zj>k5<p? < €. Then estimate

| [ alt) = ¥(0)] ] < X5 lens0) ~ 50 o

+esssup [|va (t) = v(t)|l2e ( 2 w?) :

(0,7) J>ke

By the first of (9.4) a further subsequence out of {v, } can be selected and re-
labeled with n, such that {v,,} — v/ and {Vv,,} — Vw weakly in L?(E7;R3?).
By the uniqueness of the weak limit v/ = v and Vw = Vv. By the weak lower
semicontinuity of the norm and the first of (9.4)

IVVl2:pr < liminf [[VVyllo:p, <. n

Proposition 10.2 {v,} — v strongly in L?>(Er;R3).
The proof uses the following lemma

Lemma 10.1 (Friedrichs [14]) For every € > 0 there exist a positive inte-
ger N depending only on € and |E|, and independent of v,, and N, linearly
independent functions {ab,}ps, C L*(E;R?) such that

N, T 2
Ve = Vi, < & /O | /E (Vo = ¥) - thylde| dt + 2| V(v = V), (10.1)

Inequality (10.1) is a special case, applied to (v, — v) of a more general
Friedrichs’ Lemma, which we will prove in Section 10c of the Complements.

Proof (of Proposition 10.2). Fix € > 0 and determine N. and the system
{¢Z}é\/=51 C L*(E;R?). Let now n — oo in (10.1). The first term goes to zero
because of the weak uniform convergence of (v,, — v) in L?(E;R?). The last
term is majorized by 2v2e, where « is the constant in the first of (9.4). [ ]
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11 The Limiting Process and Proof of Theorem 8.1

Let ), = Z?thp[eg for fixed k € N. Multiply (9.3) by ¢;, add fori =1,...,k
and integrate over (0,t¢) C (0,7) to obtain for n > k

¢
/vn(t)-gok(t)dx—// Vi P odrdT
E 0/E
t
—|—V// Vv, : Ve, dxdr
0/E
¢
—|—// (v - V)vy, - o dadr
o/E
¢
:/ vo-gok(O)dQH—// - dedr.
E 0/E

In turn, this is averaged in time over (¢,¢t + h) C (0,7, for a fixed h > 0,
sufficiently small so that 0 < ¢t + h < T. Denoting by

t+h 1 [t+h
][ {...}dT:,/ {- }dr
t h Ji
such averages, gives

/ M/E valr) - (1) dadr ~ | +h//E Vi(8) - @p.u(5) dedsdr
+ 1/]{ Hh/OT/E Vva(s) : Vepy(s) dzdsdr
+f +h// (Va(s) - V)Vals) - 4 (s) dedsdr
_ / Vo @3, (0) dz + ][ t+7 / 5) dadsdr.

Let n — oo by keeping k fixed, to get

[ vyt [ ] )1, v
+u]{t+h/0 /E Vv(s) : Vo (s) dzdsdr
+f +h// (v(5) - V)V(s) - oy (5) dedsdr
[ ennies {7 [ 160t i

The various limits are justified by the weak convergence {Vv,} — Vv and
the strong convergence {v,,} — v. In particular, such a strong convergence
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permits one to pass to the limit in the non-linear term. In Section 1lc of
the Complements we will discuss a counterexample to show that in general,
having weak convergence does not suffice to pass to the limit in such a term.
Next, take ¢ € C*(0,T;V), write it as ¢ = ) p;e;, and let ¢, be its
truncated series. Because of the predicated smoothness of ¢

{ex} {Ver} {eni} = @, Vo, @, in L?(Er),

and also {¢,} — ¢ in L3(Ep;R3). Compute and estimate

lim sup ‘ / Vv : Ve, dzdr — / Vv : Vedzdr
E, Ey

k—o0

< IV¥llamr lim [9(e, — @)llzmr = 0.

The limits in all the other terms, but the non-linear one, are treated similarly.
For the non-linear term

limsup‘// v-V)v. <pkdxd7—// V)v - ¢y, dedr
k—o00 E,; Ey

i {ley — o5
—00

Letting k — oo yields, for all ¢ € C*(0,T;V)

Ly S
+u]{t+h/0 /E Vv(s) : Vep(s) dadsdr
+f +// (v(5) - V)v(s) - p(s) dodsdr
/ - p(0) dz + ][Hh/ / s) dadsdr.

Finally let h — 0 and notice that

t+h
lim / T)dxdr = / v(t) - p(t)dr fora.e. te(0,T),
h—0 E

since, for integrable functions in (0,7T), a.e. t is a Lebesgue point. Thus, the
function v so constructed satisfies the definition (8.2) of weak solution. It
should be stressed that the testing functions ¢ cannot, in general be taken out
of C1(0,T; V) as the limiting process for k — oo requires a further smoothness,
guaranteed in general by taking ¢ € C°(0,T;V).
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12 Higher Integrability and Some Consequences

The Hopf solution has a limited degree of regularity due to the non-linear term
(v - V)v - . The weak formulation (8.2) holds for all ¢ € C>(0,T;V) C W,
whereas the solution v is required to be in W. If in (8.2) one could take
¢ = v then, since divv = 0, the non linear term would vanish and further
regularity could be inferred on v. Optimal local and global regularity of the
Hopf solutions is unknown and it is a current major topic of investigation. To
underscore this point, here we indicate some consequences of assuming higher
integrability on v and on the various terms of (8.1), including the pressure
term Vp.

Lemma 12.1 Let v be a Hopf solution of (8.1). Then (v-V)v € L3 (Ep;R?),
and

1v-VIVliser < VI e IVVIi2Er-

Proof. Let q,q' > 1 be Holder conjugate and for p > 1 to be chosen, compute
and estimate

/I v wyvpoar < ( i T wvprasar) ([ [ o £ 2

Choose pg = 2 and pq' = % which yields p = %. [ ]

5
Assume momentarily that Vp € L (Ep;R3) and set

loc

S=f-Vp—(v-V)veLi (BrR%).
Then the weak formulation (8.2) yields*
v —vAv =& weakly in Er for all ¢ € C°(Er;R?). (12.2)

5
This is a linear parabolic system with forcing term @ € L (E7;R?). Then

loc
by classical parabolic theory [11], the weak derivatives v;,,; and v; are in
A :
L} (Er; R3). The argument can be repeated to yield further regularity on v.
Therefore, assuming a moderate degree of integrability of Vp yields a consid-
erably higher regularity on v.

In § 20, we will get back to the regularity of the pressure for Hopf solutions.

12.1 The LP9(Er;RY) Spaces
For p,q > 1 let
Lebesgue measurable functions f : Ep — RY with
129y RY) = ) :
finite norm (£l = (o I£C,6)]5, dt)

4see 12.1. of the Complements.
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In what follows we let p > N and ¢ > 2 be linked by

N + 2 =1. (12.3)
p q
Condition (12.3) is known as the Ladyzhenskaya-Prodi-Serrin condition.
Recall also the following special case of the Gagliardo-Nirenberg embed-
ding inequality®

N 2 2p
[Vllre <A (N, p)IVVIgplvlize — where 7= P

Lemma 12.2 There exists a constant v(N,p) depending only on N and p,
such that for any triple (u,v,w) withu € LP4(Ep;RY), v e W, and w € W,
there holds

T
169w ufdad < sljal g I 95

T
/ / [(w - V)w - ul|dxdt (12.4)
0JE

T 1 Y
14N
<o ([ a0 elw 0l ) VWIS

Proof. By Holder’s inequality with conjugate exponents
1 1 1 . 1 1 1
—4 =2, e, —4-+=-=1,
r p 2 r p 2

using also the indicated special case of Gagliardo-Nirenberg inequality we have
1w ulde < vl Vel e

2 N
< ’Y||V||§I;EHVV”;EHVW”?;EHUHP;E'

Next integrate over (0,7') and use Holder’s inequality with conjugate expo-

nents
N—I—l—i-l—l
2p ¢ 2
1

/OT/E ’(V.V)w'u|dmdt < ry(/OT HV(’vt)”%;E”u("t)HZ;E dt) a
x (/OT Vv (0I5 5 dt)ﬁ(/oTWw(-,t)ng;E dt)%

2

< fy(ess sup HV(',t)Hz;E) v
(0,T7)

)

N
|25, IV W22 [0l p.g: 5

<AlVIw VWi, zr lallp.q: 27 -

This proves the first of (12.4). The proof of the second is the same by inter-
changing the roles of v and w. [ ]

®See [6], Chap. 10, Theorem 1.1.
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12.2 The Case N =2

Lemma 12.3 Let N = 2. Then for all v € W (12.3) holds with p = q = 4,
and )
IVllae, <75 viw.

Proof. The Gagliardo-Nirenberg multiplicative inequality for v € W1 P(E)
reads®

N
lullpiz < ¥(N,p)||Vullpse  where  p* = N—_”p and 1<p<N
for a constant (N, p) depending only on N and p. When p = 1 the optimal
1
constant is y(N,1) = & (%) " where wy is the measure of the unit sphere

in RV, Apply the inequality for N = 2, with v = |v|? and p = 1 to get

4, )2 _ 11 5 1
(/E\v| dx) < 2—\/7?/IE‘V\V| |dz < —ﬁ/E|v|‘Vv’dx
L 27.\3 / 2, \%
— d Vv|“d
(oo

1 9 \L 9, \?2
< \/%(es(g’STt;p/E|v| dx)Q(/E\Vv\ dx) .

IN

From this

1
/ V(e < Lvig, / Vv (- )Pda.
E m E

Integrating over (0,7T) yields

1
Vllie, < = IVIWIVVIEE,- u
™

Corollary 12.1 Any Hopf solution to (8.1) for N = 2 satisfies (12.83) for
p=q=4

13 Energy Identity for the Homogeneous Boundary
Value Problem with Higher Integrability

We get back to (8.1) with f = 0 to which we refer as the homogeneous problem
and label it as (8.1),. A weak solution is meant in the sense of (8.2),, with
f =0, for all ¢ € C(0,T;V). While a weak solution has been constructed
by the Hopf’s procedure we assume here that one is given and meant weakly.

5See [6], Chapter 10, Corollary 1.1.
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Proposition 13.1 (Prodi [35]) Let v be a weak solution to (8.1),. More-
over, assume that v € LP9(Ep; RYN) with p > N and q > 2 satisfying (12.3).
Then

Ve D55+ 20IVVIEE, = IVol3p  for ae. t€(0,T). (13.1)
Proof. The proof consists in taking formally ¢ = v in (8.2),. The assumption
(12.3) makes this possible by a series of approximations. First, since v €
L2(0,T; V) there exists a sequence {vy} C C*(0,T;V) such that {vi} — v

in L?(0,T;V). Next, let J(-) be the Friedrichs’ mollifying kernel in R and
denote by Je(+) its rescaled by a parameter ¢ € (0, 1), i.e

J(r) = O{ZXP (#5) forlrl<t, J.(r) = éj(g)

for |7| > 1,
where C' > 0 is a constant that normalizes the kernel J. Notice that
J(—=t)=J(t), J(=t)=-J().

Then for a.e. ¢t € (0, 7] fixed, set

Ve r(T) :/0 Je (T — s)vi(s) ds; ve(T) :/o Jo(t —s)v(s)ds. (13.2)

One verifies that v, . € C*°(0,T;V) and therefore, it is an admissible test
function in the weak formulation (8.2),. Such a choice gives

/ v(t) ver(t d:cf//v Ve k7 dxdT

+ / / (Vv :Vvey+ (v V)V ve ) dadr
0o JE

:/ Vo - Ve, (0) dz.
E

Letting k — oo now gives

/Ev(t)-vs(t) dﬂf—/ot[EV'Vs;r dxdr

+/0 /E(VVV:VVEHV-V)V-VE) dxdr (13.3)

- /E Vo v.(0) da,

The various limits, but the first one and the one regarding the non-linear
term, are justified since {v.} — v. in L*(0,T; V).
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The limit of the first term is justified, for fixed € > 0 since {vi} — v in
L?(Ep;RY) and the definition of v.. Indeed,

| [ v sty = ve(o)dal

/|v )| [t = 9lvils) = (o) dsda

/J t—s) /lV MNIvi(s) — v( ‘dm)ds

S/O Je(t = 8) V() ll2ellvi(s) — v(s)ll2e ds

T
< esssup IIV(t)Ilz;E/ Je(t = 5)||lVi(s) = v(s)|l2m ds
0

)

< vl ([ 20ar)’

The last term tends to zero as k — oo since {v} — v in L?(Er;RY). As for
the non-linear term, compute and estimate

’/Ot‘/E'(V.V)V.(Vs’k_ve)dmd’r}:’/Ot‘/E‘(V.V)(VS,k_VE)'VdZ’dT

<AVIwlviip.a e IV (Ve r = ve)lloier,

by virtue of Lemma 12.2. This is indeed the role of the assumption (12.3) and
the ensuing Lemma. The last term tends to zero as k — oo since {v¢ ;} — ve
in L2(0,T; V).

Next, we let € — 0 in (13.3). For the first term we have

[ vt vde= [ v [ et )v(s) dsda
= [ [ vt - v anae
// (t)[2dndx
+ [ / [v(t =) — V()] dnde.

Since J. is even and it has been normalized, as ¢ — 0,

// n)|v(t)|?dnds — /|v t)|2dzx.

On the other hand
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ﬂ/ W [ VOl =) = v(o) dmdn\
/ | [ )bt =) = vio) delan

and the integral tends to zero as |n| < € — 0 by the weak continuity of
t — v(t) in L?(E). A similar result holds for the right-hand side of (13.3).
The second term is identically zero in €. Indeed, after interchanging the order
of integration, it can be written as

/E </Ot /Ot JUT = s)v(s) - v(T) d8d7'> dz.

Now the integral in (---), for a.e. fixed x € E, is a double integral ex-
tended over the rectangle of vertices {(0,0), (¢,0), (¢,t), (0,¢)}, which, in turn
is the union of two disjoint, equal triangles of vertices {(0,0), (¢,0), (¢,t)} and
{(0,0), (t,t), (0,t)}. Now the argument v(s)-v(7) is even with respect to these
triangles, whereas J.(7 — s) is odd.

Next,

‘/Ot/EVVZV(Vs_V)d:CdT’ </E/Ot|Vv|/RJ€(T—3)v[v(s)_V(T)”dede

and this tends to zero as € — 0. Finally, for the non-linear term compute and
estimate, with the aid of Lemma 12.2,

/ t/ v-V)v- / Tl — 9)vls) - v(r)] dedsdr

which tends to zero as & — 0 by the property of the mollifiers. Observe that
the limit of the non-linear term

t t
lim//(V-V)V-VsdxdTZ//(V'V)V'Vd$d7’=0
¢=20Jo JE 0JE

gives zero contribution since divv = 0. Collecting these calculations proves
(13.1). ]

<Alviiwliv

Remark 13.1 For N = 2 condition (12.3) is redundant, as already stated in
Lemma 12.3.

14 Stability and Uniqueness for the Homogeneous
Boundary Value Problem with Higher Integrability

Proposition 14.1 ([31]) Let v and u be two weak solutions of (8.1) with
f = 0, originating from initial data v, and u, in L*>(E;RY), meant in the
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sense of (8.2),, for all p € C*(0,T;V). Moreover, assume that at least one
v or u, say for example u is in LP9(Ep; RY) with p > N and q > 2 satisfying
(12.3). Assume finally that they both satisfy the energy estimates

VG D136 + 20 VVIE.g, < [IVol3.z

for a.e. t€(0,T). (14.1)
[u(, )36 + 201 Vul3e, < lul3e

Then, there exist a constant v depending only upon N and v such that setting
w = v — u there holds

t
w8 < won;Eexp{v / ||u<-m>;;EdT}

for a.e. t € (0,T).

Remark 14.1 If both v and u are in LP¢(Ep;RY) with p > N and ¢ > 2
satisfying (12.3) then by Proposition 13.1, the energy estimates (14.1) are
satisfied. The Proposition is a statement of stability and uniqueness. If N = 2,
v and u are both in L*(E7;R?) and therefore, weak solutions are unique.

Proof. Let v and u be two weak solutions to (8.1) originating from initial
data v, and u, in L?(E), meant in the sense of (8.2),, with f = 0, for all
p € C>®(0,T;V). In the weak formulation of v take the testing function
u. j defined as in (13.2) and in the weak formulation of u take the testing
function v, . Then let £ — oo by the same arguments as in the proof of
Proposition 13.1, and add the resulting identities getting

/ [V(t) - uc(t) + ve(t) - u(t)] do
E

- /E ( /Ot /Ot J(7 = $)[V(r) - u(s) + v(s) - u(r)]dsdr ) d

¢
+V// (Vv :Vu. + Vv, : Vu) dzdr
0JE

+/O/E[(v.v)v.ua+(u-v)u-v€]dde
:/[VO'UE(O)+V8(O)'u0]dx'
E

Arguing as in the proof of Proposition 13.1, the second integral is identically
zero in € since the argument [v(7)u(s) +v(s)u(r)] is even with respect to the
two triangles of vertices {(0,0), (¢,0), (¢,t)} and {(0,0), (¢,t),(0,¢t)} and J. is
odd with respect to the same triangles. We may now let ¢ — by the same
arguments and get
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/Ev(~,t)'u(~,t)dx+2y/0t/EVv:Vudde
+/ot/E [(v-V)v-u+ (u-V)u-v]dzdr (14.2)

:/vo-uoda:.
E

Next observe that since weak solutions are divergence free

/Ot/E(v-V)v~uda:dT:—/Ot/E(v-V)v~dedT
/Ot/E(u~V)u~vdsz/Ot/E(u'V)Uowd:ch

where we have set w = v — u. Using again that w is divergence free, the sum
of these terms equals

/Ot/E [(V'V)V'u+(u'V)U~v]d:ch/Ot/E(w.v)w.udxdT.

Adding the energy inequalities (14.1) and subtracting (14.2) multiplied by 2
gives

t
(Ol + 2V, < ol + | [ [ (- V)w-udor|.
0

The right hand side is estimated by the second of (12.4) of Lemma 12.2, and
Young’s inequality with conjugate exponents + and % + 2ﬂ7 and gives
q p

t t
[ [ wwendsar| <o [ ) slwo) s i+ 209wl
0 0
for a constant v depending only upon N and v. Combining these estimates
gives

t
Iw®)lEe < Iwoll3.x +7/0 ()13, pllw(T)[3,z dr.

The proof is concluded by an application of Gronwall’s inequality. [ |

15 Local Regularity of Solutions with Higher
Integrability

We continue assuming the higher integrability (12.3), and we address the
smoothness of weak solutions. Notice that there is a difference between study-
ing the regularity of solutions to the initial-boundary value problem (8.1) or
the interior regularity.
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In this second case, we deal with the intrinsic properties of the Navier-
Stokes equations; indeed, we consider a local, weak solution in Ep, namely v
which is weakly divergence free in E7, and such that for any subset

def
Qt17t2 = (2% (t17t2) CcC ET,

we have

v € L2 (ty, to; WH2(02)) N L™ (14, to; L*(02)),

and v satisfies (8.2) for all soleinodal test functions ¢ € C° (2, 1, )-
If we consider a function ¥ = t(x) harmonic in {2 and an integrable
function a = a(t), it is a matter of straightforward computation to check that

v = a(t)Ve(a)

is a local, weak solution of the Navier-Stokes equations for f = 0. Hence, it
is infinitely differentiable with respect to space, but it might have integrable
singularities with respect to time.

This example, which is due to Serrin ([40]), suggests that the time dif-
ferentiability of a weak solution is directly connected to the time regularity
which is assumed from the very beginning.

Moreover, as pointed out by Galdi (see [17, Page 41]), these highly irregular
solutions exist because possible singularities are absorbed by the pressure
term. As summarized by Struwe in [49], local regularity properties are not
influenced by the nonlocal effects of the pressure, as long as we are interested
only in boundedness and spatial regularity.

The situation is different if one considers the initial-boundary value prob-
lem (8.1) and its weak formulation (8.2), where one can hope to gain regularity
in time from the assigned conditions. This has to do with the incompressibility
of the fluids, since a sudden modification of the boundary value of the motion
will be immediately felt throughout the whole flow region.

In this section we report a sufficient condition for the interior regularity,
whereas in a subsequent section we will get back to regularity for the initial-
boundary value problem.

Theorem 15.1 ([40]). Let v be a local, weak solution of the Navier-Stokes
equations in ET in the sense defined before.

Assume that f is conservative and at least in LYY (Ep;RYN), and that v €
LP9(Ep;RYN) where p > N, q¢ > 2 satisfy (12.3). Then v is of class C™
with respect to the space variable x, and each space derivative is bounded in
compact subsets of Er.

If, in addition, vi € L>*(Ep;RY) for some s > 1, then the space deriva-
tives are absolutely continuous functions of time. Moreover, there exists a
strongly differentiable function p = p(x,t) such that

vi—VAV+ (v -V)v+Vp="f (15.1)

almost everywhere in Er.
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Remark 15.1 Due to the local nature of the result, without loss of generality,
one could more generally assume that v € LP4(KC; RY) for any K CC Er, with
similar local integrability assumptions on f and v;.

Remark 15.2 If we limit ourselves to N = 3, using the Sobolev inequalities,

one can show that a weak solution naturally belongs to LP¢(E7r; RY) where

2
3 + = > g (for a brief discussion of this fact, see [24, Section 1]); hence, there
q

p
is a gap between the natural regularity of v and what is assumed in (12.3) in

order to have differentiability in space for v.

Theorem 15.1 is originally due to Serrin ([40]), who developed some of the
methods introduced by [33] few years before. Moreover, he used the stronger
condition

N 2
—+i< (15.2)
P g

The full (12.3) with p > N was proved by [12, 44, 49]; see also [18]. The
limiting case of p = N was dealt with in [49] under a smallness condition;
namely, Struwe assumes that v € L™>°(Ep;RY) and that there is a p > 0
such that

/B . v, )N de <e (15.3)
N

uniformly with respect to ¢ in (0,T) for some absolute constant e (see also
j44]).

For N = 3, condition (15.3) was fully removed in [8]. The regularity
approach to L3°°-solutions developed in [8] requires a completely different
method with respect to Serrin’s techniques and further developments, and
the proof is based on the reduction of the regularity problem to a backward
uniqueness problem.

For the sake of simplicity, here we present the original proof of [40], and
therefore, we limit ourselves to (15.2).

At the end of [40], Serrin conjectures that under the same assumptions on
v and f, it should be possible to prove that solutions are analytic in the space
variables. This was indeed proved by Kahane (see [21]).

Let V2 be the closure of V in W2%2(E): for N = 2 and N = 3 and the
initial datum v, € V2, Kiselev and Ladyzhenskaya (see [22]) have proved the
existence of a weak solution of the initial-boundary value problem (8.1) with

v € LY (Er;RY), v, Vv, v; € L»*®(Ep; RY);

hence, Theorem 15.1 contains as a special case that the Kiselev-Ladyzhenskaya
solution is of class C'°° in the space variable, and is Lipschitz continuous in
time, at least if f is conservative.

Moreover, if N =2 or N = 3 and the initial data are smooth enough for
the Kiselev-Ladyzhenskaya solution to exist, then by Proposition 14.1, Hopf’s
solution must be the same and consequently has to be of class C*° in the
space variables.
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Remark 15.3 As pointed out by Serrin in [41, p. 76], for the Kiselev-
Ladyzhenskaya solutions, the case N = 4 can be treated by methods similar
to the ones employed by the authors in [22].

16 Proof of Theorem 15.1 - Introductory Results

In the following, (2, ;, = {2 x (t1,t2) will denote an open set compactly
contained in Ep; moreover, we will frequently deal with convolution integrals
of the type

h(z,t) = //Q klx — &t —T1)g(&, ) dédr,

t,to
and we will write h(x,t) = (k* g)(x,t). A first fundamental result is given by
Proposition 16.1 Let k € LP? (RN x R;R) and g € L9 (2, 1,;R) with
N > 1, and

1 1 1

S =—41,

p q T
Then, for the convolution

h(z, t) d:ef//Q Kz — &t — 7)g(&,7) dedr, (2,1) € D1y s,

t1,t2

1
o=t (16.1)

we have
[llrrr < NEllpprllg
For the proof, we refer to Section 16¢ of the Complements.

We will take as k = k(x,t) a space derivative of the fundamental solution
I' of the heat equation

|q7q’~

ou
T vAu=0. (16.2)

It is usually considered in RY x (0, +00), and here we extend it to RY x R,
also taking into account a general diffusion coefficient v > 0, not necessarily
equal to 1; we set

2
—— < €xp (—'96) t>0,
I'(z,t) =< (4mvt)z dvt (16.3)
0 t<0.
We have

Lemma 16.1 Let k be a space derivative of the function I' defined in (16.3).
Then for any g € LYY (£24, 1,;R), given h = (k = g)(z,t) we have

Hh”’f‘ﬂ“l;ntl,tz S ’Y“g‘|q’q/§9t1,t2’

where v = y(te — t1,v, N, q,q',r,7"), provided that 1 < q<r,1<q <71/, and

1 1 1 1
(e (1)<
q T q r
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Proof. Since k = or
3xi

withi=1,..., N, we have

N x|?
k(z,t)] < 1t~ 2 o] exp <_|4y|t> , (16.4)

where v = 71 (v, N). Moreover, since both ¢ and 7 belong to (¢1,t2), taking
into account the definition of I", we have

ta—ty P'/p
i = ([ ([ ras) s
0 RN

Taking (16.4) into account, we have

1/p 2 1/p
[owpar) = ([ atress (<o) @
RN tzt1 RN 4vt

+o0o 1/p
Y2  N+p _ p
Al (/0 S 16Xp(_482)d8)

= fYQt_aa

1/p’

N 1 1
where v9 = v2(v, N, p) and a = D) (1 — ) + 3 Hence,
p

to—11 , , 1/1)’ )
Wl = (/ e dt) = y3(ta —t1) TV,
0

provided that ap’ < 1, and where 3 = v3(v, N, p,p’). From (16.1) we have
that

N /1 1 1 1 1 1 1 1 1
- (---]+==<-=-=4+1 = N|-—-|+2|—--—=|<1.
2 \q r 2 r o q q T qg

In the sequel, we will work with w, the so-called vorticity of the fluid; we have

802 8’01
N=2 =curlv = o7z
w = curlv = (0,0, 9. Oy
8113 8112 (%1 8’03 81}2 (%1

N =3 = lv=(—2 - =% -~ _ 2 2 __ """
W=y (8:102 Oxs’ Oz Oxy O0x1 Oxy’’

when N > 3, w is an (N — 2)-skew symmetric tensor, whose components are

Ove _ Ou
&rl Bxk'

Wkl =
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Remark 16.1 In order to streamline the presentation and avoid distinctions
for the values of N, in the following we will always write w = curlv and on
the other hand, even when N = 2 or N = 3, we will think of w as a skew
symmetric tensor; for example, for N = 3, we will have

vy Odvy Ovy dvg
O — 2 Ju1 V3
5 Oz oz gwg, glvl
Vo U1 v2 _ Ovs
W = o0x1 ox 0 Ox3 Oxs | 7
Qv _ Ovr Ouz _ Oua 0

and similarly for N = 2.
Let A = (A1, As,...,An): we define
ANw=B= (Bl,Bg,--- ,BN)7

where

ol v v
2 : 2 : k l

Bk = Al WEp = Al (8&3[ 5xk> (165)
=1

17 Proof of Theorem 15.1 Continued

Let E be a region in RV, N > 2 and 2 C E an open set such that {2 is
compact in E. Let v € V (i.e. [Vv] € L*(2), divv = 0 weakly) and consider
the vorticity w = curl v, where we take into account the previous definition
and Remark 16.1.

Theorem 17.1. Let y € §2; then there exists a vector A = A(y), harmonic
in §2, such that

v(y) = /ﬂ VL H(y — ) Aw(z) d + Aly),

where H(y — ) is the fundamental solution of the Laplacean in RY centered
at y.

Proof. Let z + u(x) be a C°(RY) scalar function and H(y — ) be the
solution of
—AH(y—x) =46, (6, Dirac mass at y)

in D'(RY). Since u € C°(RY), in the sense of distributions we have
(—AH(y — ), u) = 0y, u(x)) =u(y) = u(y) = (H(y —z), —Au(z)).

Since —Au(z) € C°(RY) and H(y — z) is summable,
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u(y) =(H(y — ), —Au(z)) = - o Au(z)H(y — ) dz =
=— / Au(x)H(y — x) do — / Au(z)H(y — x) dzx
o) RN\ {2
=0 + L.

Let us start with the computation of Ir. Over RN\ 2 we have H(y —x) € C°°.
Hence,

- / Au(x)H(y — x) dx = H(y — x) Vu(z) -ndo
RN\ Q2 o9

—/ Vu(z) -VH(y —x)dx = J, + J.
RN\ 2

Moreover,

Jy = /Mlu(:c)VH(y—x) ~nda+/}RN\Qu(x)AH(y—x)da?.

=0
Hence,

I, = H(y—x)Vu(x)-nd0+/ u(z) VH(y — z) - ndo.
Ye; EYe)

Coming to the computation of Iy, since u € C°(RY), we have

11:—/Au(:c)H(y—:L')dx:— H(y — ) Vu(z) -ndo+
2 o1

+ /Q Vu(z) - VH(y — x) dz.

Finally, summing up

u(y) = /Q Vu(z) - VH(y — x) dz
(17.1)

+ /6!? u(x)VH(y — x) - ndo.

Notice that up to now we have assumed u € C°. However, a careful inspec-
tion of the proof shows that in (17.1) the only requirement to the existence of
the integrals is u € W12(£2), so that u has L? trace over 92, where 042 is as-
sumed smooth. Therefore, by a limiting process and a standard approximation
procedure, we have that for any u € W12(02)

u(ly) = | VH(y—z) - Vu(x)dz + / u(x)VH(y — x) -ndo
Q le)
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for a.e. y € £2.
Let now v € V with v = (vy,vs,...,vn). For each k = 1,2,..., N and for
a.e. y € §2

=/ VH(y—x)-Vvk(x)dx—i—/ vp(z)VH(y — z) - ndo.
Q

o2
We rewrite

/VH —2) - Vu(a dsc—/ZaHaz (ag’“;') 8;;(:)) d

/ZaH y —x) Ov;(x )dx221+22.
o0x; oz,

and
0 0 o~ dvi(x)
2 Hy—x)— v;n;)(x) do — Hy—x)— dx
1= J B = )50 e do — [ =050 3 =5
Y. ov;
Since ; axz = divv = 0, we finally conclude that
Y) :/ VH(y — z) ANw(z) dx
2
N
+ / v(z)VH(y —z) -ndo — H(y —x)V Z(vZ n;)(x) do.
an a0 =

The last two integrals represent a harmonic vector A(y) in (2, since y # x €
912 in the classical sense. [ |

In the following, mainly for the sake of notational simplicity, we make use of
tensors. For an introduction to these objects, see for example [1].

Definition 17.2. Let k be a N-vector defined in RN x R and g an M-tensor
defined in $2, ,. Then the convolution k * g is a (M — 1)-tensor defined in
24, +, with components

(k*g)im = //Q — T)Gam (&, 7) dédr.

t1,t2 =1

Moreover, we let

divg dffz 5gzm
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We have the following

Proposition 17.1 Assume that v is a local, weak solution of the Navier-
Stokes equations in Ep, v € L*?(Ep;RY), w € L**(Er), and that f is
conservative with f € Ll’l(ET;RN). Then in any (2, 1, CC Er we have

w=VIxg+B, (17.2)
where I" is the function of (16.3), g = (N —1)w A v, and B = B(z,%) is a
solution of the heat equation (16.2) in (2, 4,.

Proof. We initially assume that v and w are both of class C?, in order to
easily perform some of the computations to follow.
First of all, it is a matter of straightforward calculations, to check that in
our case
(v-V)v=div(vewv).
If we now denote by v;, = vp(z,t) an integral average of v over a ball in
space-time of radius h centered at (x,t), it follows from (8.2) that there must
exist a regular function py, such that
vy —vAv, = —div(ve V), + £, — Vpp. (17.3)
If we take the curl of all the terms in the previous equation, and switch the
derivation order, we obtain
Owp, — vAwy, = — curldiv(v ® v)p,
where we have taken into account that curlf, = 0 since f is conservative.
Again, it is a matter of straightforward computations to see that
—curldiv(v® v), = div((N — 1) curl v Av), = div((N — 1) w Av), = divgp,
so that we can write
Oywyp, — vAwy, = divgy,. (17.4)
Now, let
By dzefwh — VI xgy;
we have
0;Bj, = Oywp, — O (VF * gh) = Opwp, — (Vatf) * &hs
vAB), = vAwy, —vA (VI xgy) = vAwy, — v (VAL) x gp,.
Hence, since I" is the fundamental equation of (16.2), due to (17.4) we conclude

that
B, — vAB, = Qwy, — vAwy, — V(0 —vAT) x gy,

= Owp, — vAwy, — (0: — vAT) x divgy,
= Oiwp, — vAwy — divgy,
=0.
As By, is in LYY(Ep; RY) uniformly with respect to h, we can then pass to

the limit as h — 0 and conclude. If v and w are not in C?, the previous
computations can be concluded by standard limiting arguments. ]
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18 Proof of Theorem 15.1 Concluded

As a consequence of Proposition 17.1, in any (2, ¢, CC Er, we can write
w=VIx*xg+B,

where g = (N — 1) w A v. Hence, |g| < v|w]||v|, where v depends only on N.
We first prove that in any (2, ;, CC Ep we have w € L>®((2, 4,). If v €
LP9(Ep;RY) and w € L™*(Er), then, by Holder’s inequality, g € L”°(Er),
where p, 0 > 1 are given by
1 1 1 1 1 1

—=-4=, —==4-
p p r o q s

We define the positive constant x € (0,1) by
N 2
(N+3)k=1- (+),
P q

and also
r S

SO ST ks

where o = oo if kr > 1, and analogously ¢ = oo if ks > 1. It is straightforward
to check that

1 1 1 1
p 0 S

By Lemma 16.1 and Proposition 17.1, we conclude that w € L%(Er), where
0, ¢ are larger than r, s, so that w actually enjoys a higher integrability with
respect to what originally assumed. The process can be repeated an arbitrary
number of times, beginning with »r = s = 2. After a finite number of steps,
one has w € L%(Er) with o = ¢ > k™ 1; at the next step o = ¢ = oo, and we
have finished the first part of the proof.

By Theorem 17.1, we now have

v(y,t)= [ V.H(y—z)Aw(z,t)dx+ Ay,t), (18.1)
o)

where v € L?°°(£2;, 1,; RY), and we have just proven that w € L*({2, 4,)-
Hence, the function A = A(z,t) must be bounded on compact subsets of
§2, both as a function of z and of ¢, and consequently, v € L>(£2, 1,; RY).
By the usual potential theoretic estimates for heat kernel convolutions (see
for example [53]), w is Holder continuous with respect to the space variables
in any compact subregion of Ep, with arbitrary exponent « € (0,1). By the
Holder continuity of w and (18.1), we have that also v is Hélder continuous.

This yields that g is Holder continuous, and by the same potential theoretic
estimates for the heat kernel convolution we have just relied upon, we have
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that Vw is Holder continuous. From here on, we can bootstrap, and conclude
that v € C°° with respect to the space variables.

Up to now, we have not used yet that v; € L*® with s > 1. It is rather
straightforward to show that (17.2) implies

Ow — vAw =divg. (18.2)

In turn this yields that dyw is of class C* in the space variables, and its
derivatives are bounded on compact subsets of Fp. On the other hand, if we
differentiate (18.1) with respect to time, we have

vt(y,t):/QVIH(y—x)/\wt(x,t)dx—i—At(y,t).

Thus, v, is of class C'*° in the space variables, and each derivative is of class
L# in time. Finally, we recover that equation (15.1) holds almost everywhere
in Er, by letting h — 0 in (17.3). ]

19 Regularity of the Initial-Boundary Value Problem

As we have already discussed in Section 15, solutions of the Navier-Stokes
equations behave globally with respect to time, as they are instantaneously
determined by the boundary conditions, but they are somehow purely local
as far as the space variables are concerned. This suggests that one can hope
to gain time regularity from the assigned initial-boundary value problem. We
will not go into details here, and we limit to state a result, whose proof can
be found in [17, § 5].

Theorem 19.1. Let v be a weak solution in Er of the initial-boundary value
problem (8.1) with f =0 and v, € H. Assume that v satisfies at least one of
the following two conditions:

(i) v € LP4 (ET;]RN), for some p, q such that % + % =1, pe(N,o0;
(i) v € C° ([0, T]; LN (E)).
Then, if E is uniformly of class C™, we have v .€ C*(E x (0,T)).

Remark 19.1 For E = R3, Theorem 19.1 was first proved by Leray [27, pp.
224-227], while for E = RY with N > 2, and p < o it is due to [12]. Sohr
proved Theorem 19.1(i) with p < oo, for domains with a bounded boundary
in [43]. That condition (ii) implies regularity was first discovered by von Wahl
([52]), in the case of a bounded domain. This latter result was extended to
domains with a bounded boundary by Giga ([18]).
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20 Recovering the Pressure in the Time-Dependent
Equations

In Section 12 we have shown how a moderate degree of integrability of Vp
yields a higher regularity on v. We return to this issue and discuss the regular-
ity of p when considering weak solutions of (8.1) for N = 3. Instead of dealing
with a general domain Er, just for simplicity we work with By x (—1,0).
Moreover, we take v = 1. We will prove the following.

Proposition 20.1 (Sohr—von Wahl [45]) Let v, € L? (By;R?) be weakly
divergence free in By and f = 0. If v is the corresponding weak solution of

(8.1) in By x (~1,0), then p € L3 (—1,0;L%(31)).

Proof. If we rely on (12.1) written over By with p = % and pq = 2, we have

Iv Oy, < (/ IVv|2dx)g(/Bl |vl'f3>}g (20.1)

<ClIVVie, + V1,5 ] -

Now we rely on the following interpolation inequality, which can be proven,
for example, relying on Proposition 18.1 and Theorem 19.1 of Chapter IX of
[6].

Lemma 20.1 Let r > 0. For v e WY2 (B,) we have

/ |v|?dx <C [/ |Vv|2daj] [/ V|2dl‘:|
B, B, By

C 3
+T l:/ |V|2d$:|
r<a B,
3(g—2
for all q € [2,6], a= %.

If we choose ¢ = % and a = =% in Lemma 20.1, we obtain

13

4
V13,5,

V||30
Ivlls0.5, <

and also,

[[v]|50 0.5, = ClIVvl3,s, + C|v3p, - (20.2)

If we take both (20.1) and (20.2) into account, we conclude that

5]

HV||2 By

(v - V)Vl\lo 5 <O

and integrating with respect to time over (—1,0) yields
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0
/(/ |(v.V)v|iida;> di
—1 By
0
—1

<C / |Vv|? dadt
B
0

4
+C/ (/ |VV|2d:1?> (/ v|2dx) dt
—1 Bl Bl
0 5
—i—C’/ (/ |v|2dx> dt,
—1 Bl

where all the terms on the right-hand side are bounded, since v € W. Hence,
we conclude that . ,
(v-V)velLd (—1,0;Ln(31)) . (20.3)

Take ¢ € V, where in (8.2) we assume F = Bj. If we use such a ¢ in the
weak formulation of Navier-Stokes equations, we obtain

(3%‘,) = —(Vv, V) — (v V)v, )

ov
’(éﬂ’(p)’ = |=(Vv,Ve) = (v V)v,9)|
<V, Ol Vel + IV l2m, VY )28 lell2:8
< IV Bl + IV 1) 2, 9 1)

2;B1 ||(P||W2’2(Bl)'

Hence,

ov

— —Ave L*(-1,0;Z

S~ Ave 12(-1,0,2)
where Z is the dual space of Wy (By). We define

ov
=——-A
g ot v,

and notice that for almost every ¢t € (—1,0),
. g, .. . .
divg = a(dlv v) — A(divv) =0, curlg=curl((v-V)v) in Bj.
Then, by the elliptic estimates of [32], Chapter 7,
gl 5, < C[Iv-VIvIl, 5, + lglZ]

Therefore, integrating we have

ov 5 15
S -Avel (—1,0,L (Bl)) : (20.4)
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(20.3)—(20.4) imply that

‘m

1

VpeL? (—1,0;L1

N

(B))
and by the Sobolev embedding theorem, we conclude that
peLf (—1,0;L%(31)) :

Remark 20.1 The proof of Proposition 20.1 is taken from [29].

21 How the Quantities Scale in the Equations

Concerning the quantities in the Navier-Stokes equations, if we rewrite
vi—VAV+ (v-V)v+Vp=Tf

taking into account only the physical dimensions, we have

I I ) S )

@t Y
This easily yields

dim [L] =1,

dim [T] = 2,

[[Z]] =[? = dim[]= -1,

pl=bf = dimfp] =2
N=2 > dm(f] =3

This will be very useful in the next Sections.

22 The Generalized or Localized Energy Inequality

In the following we work with homogeneous Navier-Stokes equations, that is,
we take f = 0. Moreover, for the sake of simplicity, we assume v = 1 (there is
no loss of generality in this assumption, as we have pointed out before more
than once).

We have already discussed the notion of weak solution in the sense of
Leray-Hopf. At this stage, it is perhaps useful to recall how the initial condition
v, € L*(E) is assumed: we have

lim [v(-,t) = VollL2(m) = 0.
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Since in the following we want to develop a local regularity theory, instead
of the global energy inequality typical of Leray-Hopf’s solutions, we need a
localized version.

As typical when introducing weak notions of solutions, we first assume
(v,p) to be regular, we deduce the corresponding inequality, and then we take
it as a definition.

Consider a non-negative function ¢ € C°(E x (0,7);R), multiply the
equation by ¢v, and integrate. We have

/OT/Evt (V) dxdt + /OT/EVV : V(pv) dxdt
+/0T/E(‘pv)'(v'v)"dxdt+ /0 t /E Vp - (ov) dadt

=L+I+13+1,=0.

Notice that we are not requiring that divey = 0. We consider all the terms
one by one.

T
L = v - (ov) dadt = / / © O0s|v|* dxdt

1 T
—5/ / |v[20: dxdt.
o JE

The first two terms cancel because of the definition of ¢. Since

V(pv) = oVv + vV,

T T
12=/ /Vv:V(apv)dmdt:/ /cp|Vv|2dxdt
o JE o JE
T T
—|—/ /Vv : (vV) dxdt:/ /gz)|Vv|2 dxdt
o JE o JE
1 /7
+7/ /V|v|2-wdxdt
2Jo JE
T 1 /7T
:/ /<p|Vv|2dxdt— f/ / v Ap dxdt;
o JE 2Jo JE

Iy —/ /Vp (pv) dadt = / /pdlv (pv) dzdt
:W—/ /pv-Vgoda:dt.
0 JE o JE

we have
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T T
1
B[ [ev o vvasa=—5 [ [ vpv-ode
0 E 2 0 E

The result is a consequence of the following fact. By sheer computations, we
have

(v) - (v-V)v
- (SD'UDSOUQ? RS 7¢UN) : [vlaml + -+ vNamN] (Ulv R 7UN)
=1 [V10z,01 + V202,01 + - -+ + VN Oz V1]
+ ...

+ N (1102, UN + V207, N + -+ + UNOzy UN]

Finally

1
=y [8w1 21)1 + 090,01 + -+ - + vNasz]

1
+ Uy |:'U16w1'U2 + 895251)% 4t vwaszz]
+...

1
+ puN |:U16x1UN + 'Uang'UN + -+ 28921\/7]]2\7]
1,
=@ |v10s, vl —&—vg@w +-~-+’UN89;N§111

1 1
+ [Ulam 2”2 + v28z 54 +v28mN2v]2V]
+ ...
1 2 1 2 1 2
+¢ Ulaﬂ@li’”N+U2aw2§UN+"'+’UNa$N§’UN
1 2 1 2 1 9
=v10s, |v| +<pv23w2§|v| +"'+<PUN3xN§|V| :(pv.viM_

Hence, if we take into account that we are integrating with respect to space
and time, relying on the previous computations we have

/OT/(@V) (v - V)vdzdt
/ /sov = \v|2dxdt /T/ L1 o/2 div(gv) dadt

W / / ~|v|*v - Vpdadt.

Eventually, if we collect all the terms, we have
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T T
1
/ /IVV|2s0dxdt:§/ /IVIz(atsoJrAcp) dzdt
0 E 0 E

1 /7 T
+*/ / |v|2v-V<pdxdt+/ /pv-Vgdedt
2Jo JE o JE

or equivalently

T T
2/ / |Vv|?p dedt = / / [v|? (Or + Ap) dadt
o JE o JE
T
+/ / ([v[* +2p) v - Vo dadt.
o JE

We say that a weak solution (v, p) satisfies the generalized (or localized) energy
inequality if

T T
2/ /\Vv\2cpdxdt§/ /|v|2(8tg0+A<p)dxdt
0 E 0 E
T
—|—/ /(|v|2—|—2p)v-V<pdxdt
0 E

for all non-negative ¢ € C°(FE x (0,T);R). We will say something about
the summability of v in a while. We mentioned before the weak continuity in
L2(E) of v(-,t); this means that Vi € L?(E), we have

/Ev(-,t)wdx — /EV(~,tO)1/de

ast — t, € [0,T]. As a consequence of this, the generalized energy inequality
can be further localized with respect to time; indeed, V¢ € (0,T), V¢ €
C3=(E x (0,T);R), ¢ > 0

t
/ |v|2<pdx+2/ / Vv |2p drdr
Ex{t} 0 JE

! ) (22.1)
< / / [v|? (8- + Ap) dadr + / / (|v[]> +2p) v Vo dadr.
0o JE 0o JE

23 An Introductory Estimate

In the sequel we will need the following introductory result.

Lemma 23.1 Let v € L®(0,T; L2(E)) N L2(0,T; WY2(E)), (z0,to) € Er,
assume that B,(x,) X (to — 0%, to) C Er, and for 0 <r < p let

def !

A s [ R
to—r2<t<t, I B, (z,)
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1 [t
B(r) def 1 / / |Vv|? dzdt,
T Jt,—r2 B, (zo)

1 [t
) dzeff/ / Iv[? dadt.
T2 to—72 Bp(xo)

() < [(p) [A(p)

Then

ol

+
/N
(s
N——

w
b
—
b

=
o

z

>
Tw

, (23.1)

where v depends only on the dimension N = 3.
Proof. Without loss of generality, we may assume (z,,t,) = (0,0). We let
B, ={|z| < r}, Q, = B, x (—r%,0],

W= v
B

P

and

for a.e t € (—r?,0] we have

/B V()2 dz = / (V2 = 9,2 + [, 2] de

r

s/ |\V|2*|{’p|2|dz+/ 9,2 da
B B

P r

< clp/ ’V|v‘2’ dr + C—f\, (/ [v|? dm) PV
B, P B,
N
< 03,0/ [v||Vv|dz + co— / v |2 da
B P B

P P

N
203/)/ [v||Vv|dz + co <T> / |v|? da.
B P B

o o

/ |Vv|2dx]
B

P

N
+ e <r> / v|? dz (23.2)
P B,

e (p)N Alp).

Thus, we can conclude that
1
2

[v|? dsc]

<csp*[A(p))? [ / R

B,

We now let N = 3. If we take into account Lemma 20.1 and we choose ¢ = 3,
a= % we get
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/|v|3dxg7U |v|2dm] [/ VVQdJ:] +Z[/ v|2d4 . (23.3)
B, B T2 B,

B "
Combining (23.2) and (23.3) yields

1 1
/ lv|® dx <c [/ |V|2d$C:| [/ |Vv|2dx}
B B, B

r
3
2

5 ottt | [ Wdz]; o (;)3,4(,,)
<crilat | [ p|Vv|2da:2

b2 [, v L ot (p) (Ao
—c (;)3[A<p>]3 i +” () [ / p Vdezr

Now we integrate over ¢ in the interval (—r?, 0] to obtain

/Oﬂ /B |v|? dedt <c (;)S[A(p)]grz

where we have applied the Holder inequality (with respect to time) in order
to estimate the last term. If we divide everything by r2, we have

=/ /| v dedt < ¢ (p) ()}

that is
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which finally yields

o) <e (L) e s e (2) i e

Remark 23.1 Estimate (23.1) is simply a Real Analysis fact, and does not
depend on v being a solution of the Navier-Stokes equations.

24 Suitable Weak Solutions and Partial Regularity

In their paper (see [3]) Caffarelli, Kohn & Nirenberg introduce the notion of
suitable weak solution, which we are going to define next.

Definition 24.1. A pair (v,p) is a suitable weak solution of the Navier-Stokes
equations in an open set D C R? x R if the following conditions hold:

1. (v,p) satisfies the Navier-Stokes equations in the sense of distributions in
D [which is a much weaker assumption, with respect to what we usually
requiref;

2.p € L3(D) with [[,|p|? dedt < E and for some constants E,, Ey we
have

/ |v|*dz < E,, Dy=Dn(R*x{t}) fora.et such that D; # 0,
Dy

// |Vv|?dzdt < E.
D

3. The generalized energy inequality (22.1) holds V¢ € C3°(D;Ry).

Remark 24.1 With respect to the usual way of proceeding, now we have
the extra condition about the pressure. A priori, it is hard to say whether
solutions built by Leray and Hopf have the right summability as required
here. However, as we have seen, p € L%(Ql) and this allows us to prove a
suitable compactness result

Before coming to such a result, let us make few quick comments about the
notion of suitable weak solution.

Remark 24.2 If we take the interpolation inequality of Lemma 20.1 in B, X
(0,T) with ¢ = 10/3 (which yields a = 1), we have
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T o T H
/ / [v|3 dadt SC’/ [/ [v|? dac} {/ |Vv|? dx} dt
o JB, o LB, B

r

T 3
—|—% (/ V|2d33) dt
= Jo B,
SC(sup/ |v|2da7) / / |Vv|? dxdt
0<t<T
—|—(sup/ |v|2d1‘> / dt
0<t<T

2 C s
:CE(;”’El + —QEOST.
r

T
In particular, this yields that / / |v|>v - Vi dadt is well-defined. We have
0

already somehow seen this fact whfri we introduced the notion of weak solu-
tion, that is, when in Lemma 8.1 we showed that v € W implies v € L' (E7).
Here we have just given a different proof, where the bounds are more clearly
pointed out.

Scheffer was the first one to study local regularity for the Navier-Stokes equa-
tions. His result states that

Theorem 24.2 ([36]). For f = 0, there exists a weak solution of the Navier-
Stokes equations, whose singular set S satisfies

H3(S) < 400, HY(S N (E x {t})) < oo uniformly in t,
where H* is the Hausdorff k-dimensional measure.

Calffarelli, Kohn & Nirenberg improved the previous result in this way.

Theorem 24.3 ([3]). For any suitable weak solution of the Navier-Stokes
equations on an open set in space-time, the associated singular set S satisfies

PL(S) =0,
where P is the parabolic 1-dimensional Hausdor{f measure.

Such a quantity is analogous but finer than the euclidean 1-dimensional Haus-
dorff measure. In the sequel, we will explain what we mean by this.
Theorem 24.2 is essentially a consequence of the following.

Proposition 24.1 There are absolute constants e; € (0,1) and ¢; > 0 such

d
that if (v,p) is a suitable weak solution in some cylinder Q, fef B (x,) X (to —
r2,t,] and

4

= [ vt a5 [ (/ |pdx> dt<e,
—r2 B (xo)
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then .
vl < m Qs

Hence, in particular, v is regular.

The Scheffer estimate about the Hausdorff dimension of the singular set comes
as a consequence of a covering argument based on negating the main assump-
tion in Proposition 24.1. We will discuss this fact later on.

Theorem 24.3 is essentially a consequence of the following.

Proposition 24.2 There is an absolute constant e2 € (0,1) such that if (v, p)

d
is a suitable weak solution in some cylinder Q. :efBT(a:O) X (to — 1%, t,] and

1
lim sup — // |Vv|? dedt < e,
r

r—0
the |v| is limited.

Again, the estimate on the Hausdorfl parabolic dimension of the singular
set follows from a proper covering argument based on negating the previous
assumption.

25 A Compactness Result for Suitable Weak Solutions

We can finally come to the compactness result we mentioned before.

Theorem 25.1. Let {(v,,pn)} be a sequence of weak solutions (in the sense

d
of Leray-Hopf) of the Navier-Stokes equations in @1 fef B; x (—1,0], such
that for some constants £, E,, E1 we have

/ |Vp|?de < E,  for a.e. t € (—1,0],
le{t}

// |Vv,|? dedt < Ey,
1
// |pn|%d$dt§E,

and the pair (v, pn) satisfies the generalized energy inequality (22.1) for all
n. Assume that

Vo — v weakly in L?(—1,0;V),
v, — v weakly" in L*(-1,0;H),
Pn — p  weakly in L%(Ql).

Then (v,p) is a suitable weak solution in Q1.
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Remark 25.1 The crucial point for the sequence {(vy,,p,)} is that each pair
(Vn, pn) satisfies the generalized energy inequality.

Under this point of view, we have the following result (for the proof, we refer
to [3, Appendix]).

Theorem 25.2. Suppose E is a bounded, open, connected set in R3, locally
lying on one side of its boundary, and that OF is a smooth manifold. Suppose
that £ € L?*(Er) and divf = 0 (in the weak sense). Finally, assume that

vo € HNW35:3(E). Then there exists a weak solution (v,p) of (8.1) in Er
satisfying

1.v e L2(0,T; V)N L=(0,T; H);

2.v(-,t) = v, weakly in H ast — 0;

3.pe L3 (Er);

4. For any ¢ € C°(Er), v > 0, v satisfies (22.1), where we have the extra

t
term 2/ / f - vdxdt on the right-hand side.
0o JE

Remark 25.2 Notice that 1.-3. say that (v, p) is a weak solution in the sense
of Leray-Hopf, and 4. further specifies that it is a suitable weak solution. On
the other hand, we are not saying that all weak solutions are suitable weak
solutions, but only that there exists (at least) one suitable weak solution.

Now we prove Theorem 25.1.

Proof. We recall that

v, — v weaklyin L*(—1,0;V),
v, — v weakly” in L>®(-1,0;H),
p, — p weaklyin L%(Ql).

It is enough to prove that Vq € [1, 13—0) vy, — v strongly in L2(Q1). Indeed, in
such a case, for any smooth ¢ > 0, by Fatou’s Lemma we have

QIiminf// |an|2<pdxdt22// |Vv|%p dadt.
n—oo Ql Ql

Moreover, by the strong convergence of v,, — v in L3(Q;) and the weak
convergence of p, — p in L%(Ql), we conclude about the convergence of the
right-hand side of the generalized energy inequality.

In order to show the strong convergence in L?(Q1), we first prove a proper
weak uniform continuity of v,, as a function of time. This is done in the same

spirit of what we have done in the proof of Proposition 20.1. As before, we let

7 w22 (E)y. By

0vp — Avy + (v - V)v, + Vp, =0 weakly in Q4
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and by the weak convergences of v,, to v and p,, to p, we can conclude that

vy € LE(=1,0;2), [0l Cor

3 <
L2(-1,0;2) —

for some constant ¢, which depends on

Sup [||V"||L2(—1,0;V) + IvallLoo (—1,0,m) + ||pn||Lg(Ql) .
This allows us to conclude that v,, € C°([-1,0]; Z), and also that they are
uniformly continuous as functions of ¢ € [—1,0] with values in Z. By an
abstract result (see [50, Chapter III, Theorem 2.1]), we can conclude that all
v, stay in a compact subset of L?(Q;). Hence, v,, — v strongly in L2 (Q1).
Finally, since all v,, are bounded in L% (Q1), we deduce that v,, — v strongly
in L4(Qy) for all g € [1,%). [ ]

26 The Partial Regularity Revisited

We give a thorough presentation of the partial regularity theory for Navier-
Stokes equations. We restate Theorems 24.2-24.3 as done in [29].

Theorem 26.1. Let (v,p) be a suitable weak solution of the Navier-Stokes
equations in Q1. There exist two positive constants €, and c,, such that, if

// [\VI?’ + |P|%} drdt < e,, (26.1)
@

then v is bounded; in particular, v is a-Holder continuous in @, for some
a € (0,1) and any r € (0, 3), and ||v(z,t)||co(q,) < Co-

Remark 26.1 At a first reading, it might seem odd, that we jump from
boundedness to Holder continuity, both is space and in time. However, as
we know from Theorem 15.1, from the local boundedness of v one concludes
higher regularity in the space variables (here f = 0, hence we do not require
extra regularity assumptions on it). As pointed out in [3], the effect of the
pressure prevents one from proving such a local higher regularity result in the
time variable. However, if v is absolutely continuous in time, and v; € L{ (D),
q > 1, then the same is true of the space derivatives of v; on compact subsets
of D.

Remark 26.2 By the scaling properties discussed in Section 21, (26.1) can
be equivalently rewritten as

1
= // [\V|3 + |p|%} dzdt < €.
Qr

We omit the proof of Theorem 26.1, even though we will rely on it. The
interested reader can refer to [29, Theorem 3.1].
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Theorem 26.2. Let (v,p) be a suitable weak solution of the Navier-Stokes
equations in Q1. There exists a positive constants €1, such that, if

1
lim sup — // |Vv|? dedt < e, (26.2)
r—0 T ”
then there exist 0,, r, € (0,1) and 0 < ea << 1, such that either
3 2 ]- 3 2
[A(0,)]2 + (D] < 5 ([AC)E + [DE)P) (26.3)
or ,
[A(r)]? +[D(r)]? < e << 1, (26.4)

where 0 < r < r,, and
1
D)L / / ip|? dadt. (26.5)
r
Qr

In the next Sections we proceed in the following way. First, we prove that
Theorem 26.2 implies the regularity of v; then we show how negating the
main assumption of Theorem 26.2 we obtain an estimate on the Hausdorff
parabolic dimension of the singular set S. Finally, we give the full proof of
Theorem 26.2.

27 Theorem 26.2 implies the Regularity of v

Let us first suppose that (26.4) holds true. By the interpolation inequality of
Lemma 20.1 with ¢ = 12, we have

. ; 5
// |V|TO dadt <Cr3 (1 sup / [v|? da:dt) (1 // |Vv|2dxdt>
. T —r2<t<0JB, rJJQ.
1 3
+ < sup / |v|2dx) ]
T _r2<t<0JB,

=Crd [[AG)E B(r) + [AM)]F] -

Hence, by (26.2) and (26.4), provided r, is sufficiently small, we have
10 5 (4 0 5.
// |v|® dxdt < Crs (62961 + e ) =Cr3g,
Qr

4 10
where we have set € = eJe; + €’ . By a straightforward application of the
Holder inequality,

9
1 1 10
- // |v|? dedt < — {// |v|% dxdt] < Ce
e rz LVJQ,
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By a possible reduction of €; and €3, we conclude that

1 3
2[/ |v|3dxdt+// |p2d$dt]S€o,
r Qr Qr

and Remark 26.2 and Theorem 26.1 yield that v is regular.
On the other hand, if (26.3) holds true, iterating it we obtain that there
exists n, € N such that

1
< €2,

[A(877)? + [DO5)] < 57 <

and repeating the previous argument, we again conclude that v is regular. B

Remark 27.1 A similar argument is discussed in [30].

28 An Estimate of the Hausdorff Parabolic Dimension of
the Singular Set

We define the Hausdorff parabolic measure. As above, we let @, denote the
cylinder with radius » and height 72. At this stage the upper vertex of the
cylinder plays no role.

For any given set X C R x R and k > 0, we define

PF = lim PF(X),

§—0+

where

Pk (x) —inf{er X C UQ“’ r; < 5}.
i=1 i=1

It is rather easy to see that P* is an outer measure, for which all Borel sets
are measurable; on its o-algebra of measurable sets, P* is a Borel regular
measure (we refrain from going into details here).

The Hausdorff measure H* is defined in an entirely similar manner, but
with @Q,, replaced by an arbitrary closed set of R? x R of diameter at most
ri. Typically, one would use balls. Moreover, one usually normalizes H* for
an integer k, so that it agrees with the surface area on smooth k-dimensional
surfaces.

It is not hard to see that H* < ¢(k)P*.

What we really need is a simple fact: for any X € R? x R, P*(X) = 0 if
and only if, for each § > 0, the set X can be covered by a family of parabolic

oo
cylinders {Q,,}32, such that Z rk <4
i=1
We also need the following (parabolic) version of Vitali’s covering Lemma.
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Lemma 28.1 Let F be any family of parabolic cylinders Q,(x,t) contained
in a bounded set of R® x R. Then there exists a finite or countable subfamily

F'={Q; = Q. (x;,t;)} such that

1 QiNQ, =0 fori+# j;
2.VQ € F 3Q.,(zi,t;) € F' such that Q C Qs (x4, t;).

We omit the proof. The interested reader can refer to [3, Lemma 6.1]. It is
important to remark that

sup r(Q) < oo,
QEF

since we are assuming that F is contained in a bounded set.

Now let (v, p) be a suitable weak solution defined in an open set D. With-
out loss of generality, we may assume that D is bounded. By Theorem 26.2,
if (z,t) belongs to the singular set S,

1
lim sup — // |Vv |2 drdt > €.
r—0 T Q-

Let F' be a neighborhood of S in D, and let § > 0. For each (z,t) € S, we
choose Q. (z,t) with r < ¢ such

1
- // Vv | dydr > e, Q. (z,t) C F.
r(@,t)

This plays the role of the family F of Lemma 28.1. Apply such a lemma to
this family of cylinders: we have a disjoint subfamily 7' = {Q,, (z;,¢;)} such
that
o)
S c | @sr (i ts)
i=1
and
G 1 o 1
Zm < — Z// |Vv |2 dydr < —// |Vv |2 dydr.
i=1 “ai=d e 1 JJF
Since § is arbitrary, we conclude from the previous estimate that S has
Lebesgue measure zero, and also that

PUS) < E// Vv |2dydr
€1 F

for every neighborhood F of S. Since |Vv|? is an integrable function, it follows
that P(S) = 0.

29 Proof of Theorem 26.2: A First Auxiliary Estimate

Let 6, € (0,1) the quantity postulated in Theorem 26.2. For the moment we
assume it as given, and we further require it to be in (0, %) The final argument
will determine it. We have the following.



29 Proof of Theorem 26.2: A First Auxiliary Estimate 75

Lemma 29.1 Let p € (0,1) and r € (0op, ). Let (v,p) be a suitable weak
solution of the Nawvier-Stokes equations in Q1. Then, for almost every t €

(—§7 0] we have

1

3 1 _
=N {}|pgdx§090p2/ v —v,|*dz
x {t

B, x{t}

1
‘e, () E / ipl? da,
P/ P”JB,x{t}

where Cy, is a parameter that depends on 0,, C, depends only on the dimen-

ston N =3, and
1

B |BP| B,x{t}

v, vdz.

Proof. A rigorous proof is in [24, Lemma 5.3] and [37, Lemma 3.1]. Here we
concentrate on the main issues, and sketch the remainder. By rescaling, we can
assume p = 1 and directly work with the Navier-Stokes equation in Q. If we
take the divergence of both terms, we easily conclude that for all ¢ € (—%, 0]

Ap = —div[(v-V)v] in Bj.
Since divv = 0, it is a matter of straightforward computations to check that
div[(v - V)V] = 0,0;0,,v; in D'(By)

with 4, j = 1,2, 3. For t fixed, we choose p € (%, 1) such that

/ \pﬁdass/ ipl? da,
o8, B

P =0po+h,

and decompose

where
Ap, = —02,vj0,,v; in Bp, Ah =0 in Bp,
Po =0 on 0B, h=p on 0B;.

Thus, for any 6 € (6,, i) we have

/ ip|3 de < C / |po|%dx+/ /% da .
ng{t} ng{t} ng{t}

We need to estimate the two terms on the right-hand side.
It is not hard to see that the defining relation of p, can be rewritten as

Apo = =0y, (v; = 0;)0y; (vi = 0;) in By,
Do =0 on 9B,




76 2 ANALYSIS OF THE NAVIER-STOKES EQUATIONS

where
1

~|Bi| Jp,

U; v; dx.

By the Calderén-Zygmund estimates, we conclude that

/ pol? da < 090/ v —v|? da.
BgX{t} BIX{t}

. . . 3 . .
On the other hand, since h is harmonic and sz is a convex, monotone increas-
ing function in [0, 00), |h|2 is sub-harmonic, so that

Ih\%g/ |p|%das3/ ip|? d,
9B; By

/ |h|%dx§0 p|? d,
Be x{t} Bix{t}

and finally
/ |p|%da: < Cgo/ v -V, dz +C, |p|g dx.
Bgx{t} By x{t} By x{t}
If we now rescale back to a general p € (0,1), we conclude. ]

Integrating the previous relation with respect to ¢, and taking into account
(26.5) yields

D(r) < Cy, — // v = v,|* dwdt + C, (T> D(p)
p Qp p

for p € (0,1) and 7 € (fop, §). Let us now deal with the first term on the
right-hand side. We have

1 1 : :
7// |v—x7p|3dxdt:—2// v =, 3 v — v, | dedt
P Q, P Qp
0 5 3
v —v,2dz v—v,0dz| dt
p p
—p? B, B,

i o
sup / v — v|* dx / /
—p?2<t<0J B, —p2 B,
i i
C |1 :
<—< |- sup / v —v[*dx pi // |Vv|? dxdt o3,
P™ | P —p2<t<0JB, Qp

where we have first applied the Sobolev-Poincaré inequality withp = 2, N = 3,
q = 6, and then the Holder inequality. Hence,

<

e

1
4

v —v,|° dx] dt

IN
3=
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7// |v—vp| dxdt < C p pSli[t)<0/B |v|2dﬂc]Z Ll) //Qp |VV|2 dxdt}Z
= C[A(p)* [B(p)]1,

and we conclude that for any p € (0,1) and r € (0op, §)

r

D(r) < Co, JA B! +C (p) D(p). (20.1)

30 Proof of Theorem 26.2: A Second Auxiliary Estimate

We consider the localized energy inequality. We take a test function ¢ € C°
such that
p’ :
OS@SIa 9021 in B% X(*?,O] :0 in Rd\[BPX(7p25p2]]7
02

C C
Vol <=2, 0<dp < —2, |Ap|< —2
P p p?

It is easy to see that by the assumptions on v and ¢, for t € (—p?, 0] we have

/ \V|2<pdx—|—2// |Vv|2p dadt
B, x{t} Qp

< // [v[? (Osp + Ap) dadt + // (|v]> = [V[* + 2p) v - Vo dadt
Qp Qp

< // [v[? (0sp + Ap) dadt + // (|[v]* = [V + 2p) v - Vo dadt,
Qp Qp

where
2 1

v |v|? d.

|B7p| B, x{t}

We estimate all the terms. We have

// 2pv - Vodzdt < =2 // |p||v] dzdt
G // \p|2 dzdt] l// |v|3dxdt]
p

%
Q 2 // ‘plz dmdt] llZ // |v|3dxdt]
P P Qp

= Cip[D(p)]3 ] <p>]%

<

<
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In the same way

// [[v]* = [v]| v - Vo dadt
Qp
o [ ) Z 3
Sﬁ / ||v|2—|\7|2|% dx / |v]®dx| dt
P J-p2 |/B, B,
o [ %
§ﬁ / Vv dx] l/ |V|3d$] dt
P J—p> |/B, B,
o T
<G / V|| Vv| dz /
L Bp Bp
/ |Vv|2dx] l/ |v3da:] dt
B B

. 1

cy [° :

e / [v[*dx

P J—p2 LY Bp p p

C.
gi sup /
P | -p2<t<0JB,

: V/ |vV|2dxdtr /_Opz (/B |v|3dx>§dt

1

3
v|3dx] dt

N

|v|2d3:1

=

Since

wol=

0 IRk 3
/ / |v[’dx | dt| < // |v|®dzdt| p
—p? B, p

1 3
< [2 // IVISdfvdt] p=plC(p)]*,
Y Q,
we conclude that

// [[v|* = [v[*| v - Vo ddt
Qp
1 1
s |1 sup / |v|2dx f//
P —p2<t<0JB, P
[

Si
Q
- pP[C(p)]F = C3p[A(p)]2 [B(p)] 2 [C(p)]5.

p
We choose r € (6,p, §) as in Lemma 29.1; notice that by the previous choices,
¢ =1in Q,. We have

/ |V|2g0dx+2// |Vv |2 ddt
B, x{t} Qp

ol

|Vv|? da:dt] :
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2/ |v|2dx—|-2// |Vv|? dzdt
Brx{t} Qr

1 1
— sup / |v|*dz| +r [ // Vv |? d:vdt}
T —r2<t<0J B, x{t} rJJQ,

=r [A(r) + B(r)].

>r

On the other hand

// Iv|? (Orp + Ap) dxdt
Qo
<G [ i < 2 [ /l
P JJQ, P Q
X
P JJQ, P

Collecting all the estimates obtained so far, yields

V)

3
lv|? da:dt] p3

P

2

= Cap[C(p)]3.

w\m‘ wlot

<CH

T[A(T)JrB(T)]
< Cap[C(p))F + CaplA(p))2[B(p))2[C(p)]F + Cip[D(p))3 [C(p)]3,
that is
A(r)+ B(r)

31 The Proof of Theorem 26.2 Concluded

The proof of Theorem 26.2 relies on a clever combination of (23.1), (29.1),
(30.1). We recall that 6, € (0, 1) still needs to be fixed. The next argument
will determine it, together with r,. We let p = 2r and we select three different
radii, i.e.

Oor, 20,r, T

9

so that the three previous relations will be written only in terms of r and 6,.
Notice that the choice of the three radii allows us to use all the three (23.1),
(29.1), (30.1). Moreover, we remark that

B(6,r) = ei// Vv |2 ddt
ol Qo,r

1
<2 / / |Vv|? dedt = 2B(20,r)
20,7 Q26,1
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ei%// V|2 dodt = S B(r),

Af,r) = sup /B |v|? dz
CFY:

ol" —92r2<t<0

and

|
~

<

l\D

sup / |v|?dx = 2A(20,r)
B2o,r

2007 _402r2<t<0

sup / ‘V|2d1':9iA(7“),

—7‘2<t<0 -

S|

1
<
=0

so that
B(6,r) < 2B(20,r) <

(31.1)
A(l,r) < 24(20,r) <

1 3
D(O,r) = —= 2 dzdt
(0r) 6272 //QW pl? do
1 3
=~ 4@ // O |p| 2 daxdt = 4D(200T)

_02 2// |p|2dxdt D(r),

1
D(0ar) < 4D(2057) < g2 D(0). (31.2)

Finally

that is

Writing (30.1) for 6,R and 26,r yields
[A(B0)]E <C [28C(20,r) + 23 [A(26,0)] [B(26,0)] H[C(20,)]
+23[D(20,1)][C(20,7))]
<C [C(2007) + [A(205r)F [B(20,r)]F + [D(20,7)]

Relying on (23.1), (29.1), and on (31.1)—(31.2) we have

Nlw

[A(8or)]F + [D(6r))
<C |C(20,7) + [A(20,0)}[B20,r)]} + [D(20,r)]?]

<c [93[A<r>]% AW BT + (4200 (B0,



32 Concluding Remarks 81

+ O21A() B + 62[D(r)?|
<ce%«wz+&M@W+¥Q3mﬁ+ﬁ§meé§mmﬁ+
+ QLA B + 62(D(r)?]
o ge B0 ) + D0

+ ?Z[B (r)]
This holds for r € (0,r,) and 6, € (0, i), where both r, and 6, still have to

be chosen.
generality we may assume that

1
+ 7 [B(r)]

2
90 + QO[B(T)] 0401
for some 0 < €3 << 1 which depends on €1, so that the previous relation

In view of the assumption on 0, and of the final thesis, without loss of

vl

C
<FBOE

(SIS

+[D(r)]?| +es.

Nlw

becomes
[A(B)]* + [D(81)] < Cafl, [[A()

If
[AM) + D) < e,
where €5 is the quantity of (26.4), we have finished. Otherwise, let €3 be so

tpe

small that
< Cs0,e9 < O30, |:[A(T)]

3
2

2 B

ESZW
o

whence

[A(0)]F + [D(61)] < 2C30, [[AM)]F + [D(r)]?]
Now we choose 6, € (0, i) so small that 2Cs0, < % Once 6, is determined,

from o
gamm%ga%@
[ |

we choose 1, such that the condition on the lim sup is satisfied.

32 Concluding Remarks

In the following we collect some final remarks about all the results we discussed

in these notes.
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32.1 Partial Regularity

The partial regularity of the Navier-Stokes equations per se is not a strange
result. Indeed, in general, for quasi-linear elliptic or parabolic systems the full
regularity is not expected. On the other hand, Navier-Stokes equations are a
semi-linear system, and in general such a situation ensures better regularity
than the quasi-linear setting.

Different (but equivalent!) statements of Theorems 26.1 and 26.2 are col-
lected and briefly commented upon in the survey work [38]. With respect
to the original work by Caffarelli, Kohn & Nirenberg, a somewhat simpli-
fied proof of the partial regularity is given in [29]. In these notes, we have
mainly followed such a presentation, trying to fix the frequent misprints of
Lin’s manuscript.

A slight improvement concerning the estimate of the Hausdorff dimension
of the singular set S is given in [4].

In [51] Vasseur gives an interesting proof of the partial regularity of suit-
able weak solutions, which is based on the truncations used by DeGiorgi in
his celebrated result about the local Holder continuity of locally bounded,
local weak solutions of linear elliptic equations with bounded and measurable
coefficients (see [5]).

32.2 Boundary Behavior

Up to now we have said nothing about the smoothness at the boundary.
Suppose we consider

B ¥z < ray > 01, @ € B« (2,0,

and we assume
v}% =0.
Can we find reasonable conditions on v for the space-time origin (0,0) to be
a point where the same v is bounded?
A boundary version of the Ladyzhenskaya-Prodi-Serrin condition can be
stated in the following way.

Theorem 32.1. Assume that v.€ W1 (—1,0;W2™(B)) N LP9(QT) and
p € L"(—1,0; Wh™(B)) with
3 2
l<m<p, 1l<n<gqg -+-=1,
rp q
is a weak solution of the Navier-Stokes equations in QT. Moreover, suppose
that V|I3 = 0. Then v is bounded in a neighborhood of the origin.

The result is due to Solonnikov (see [46]).

A boundary version of the partial regularity can be given too. This requires
to define what suitable weak solutions at the boundary are. We refrain from
going into details here. The interested reader can refer to [38, Section 6].
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32.3 Suitable Weak Solutions

It is important to point out the real meaning and impact of suitable weak
solutions; indeed, it is true that we have localized the energy inequality, and
the boundary conditions play no role, but now the pressure p is present in all
the estimates, and in more than one sense the pressure can be considered as
a substitute for the boundary conditions.

In [19] He gives a proof of the partial regularity result for weak solutions.
He starts from a general definition, that contains weak solutions in the sense
of Leray-Hopf as a special case.

Problems and Complements

1c Navier-Stokes Equations in Dimensionless Form

A fluid is viscous if its infinitesimal particles at x at time ¢, moving with
velocity v(z,t) encounter a non-zero resistance R = — f(|v|)v, where f is a
smooth, non-negative function whose form is determined from experiments.
For sufficiently slow motions f(|v|) = const (in the air |v| <2 m/sec). In such
a case the motion is said to be in viscous regime. For an ideal fluid particle
assimilated to a ball of sufficiently small radius r

f(v]) = 6mpr for |v| <1 (viscous regime)

where p is the dynamic viscosity. This form of f(|v]) implies that p has
dimensions p[V][L], where p is the density of the fluid. The dynamic viscosity
is a measure of a resistance offered by a fluid when forced to change its shape.
It is a sort of internal friction measured as the resistance elicited by two
ideal parallel planes, immersed in the fluid, when forced into a mutual sliding
motion. The unit of measure is the poise, after J.L.M. Poiseuille. It is measured
in dyne - s/cm? and is the force distributed tangentially on a planar surface
of 1em?, needed to cause a variation of velocity of 1cm/sec between two ideal
parallel planes immersed in the fluid and separated by a distance of 1cm. For
water at 20°C, the dynamic viscosity is .01002 poise. The kinematic viscosity
is the ratio of the dynamic viscosity to the density of the fluid. The c.g.s. unit
of kinematic viscosity is the stoke, after G. G. Stokes.

For larger speeds, f(|v]) is proportional to |v| and the motion is said to be
in hydraulic regime (in the air 2 m/sec< |v| <200m/sec). For an ideal fluid
particle penetrating the fluid and assimilated to a ball of sufficiently small
radius r

f(v]) = brpr?|v| (hydraulic regime).
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4c Non-Homogeneous Boundary Data

Since F is bounded, by the embedding inequalities (2.5)-(2.6), the norm || ||y
is equivalent to ||V - ||2. Thus we regard V as a Hilbert space by the inner

product (-,-) = (V+, V). For a fixed pair (u,w) € V, let T(w, u) be the linear
bounded functional in V' defined by

(T(w,u),p) = V/E Vu: Vedz
—/E{w~(u‘V)+u~(b-V)+b~(u~V)}godac.
With g given by (4.4) consider also formally, the functional equation
T(w,u)=g in V*. (4.1c)

Then a weak solution of (4.1) is an element u € V such that T(u,u) = g.

Proposition 4.1c Let the assumptions on f and a be in force so that in
particular (4.9) holds. Then for all w,u € V with ||ully >0

1
|'T(w,u)| > e (4.2¢)
Moreover, for any fired w € V', any solution u € V of (4.1c) satisfies
Vuls < 2 (| Vb bl 4
IVullz < — |lfllg +vI[Vb2 + [Ibl] , (4.3¢)

where v is the constant of the embedding of V into L°(E;R3).

Remark 4.1c These estimates are independent of w. Thus in particular they
hold for solutions of T(u,u) = g.

Proof.

IT(ww)[ = sup (T(u,w), @) > ‘LW
Ipli=1 ([ul[v

4.1c Solving (4.1) by Galerkin Approximations

The space V is a separable Hilbert space by the inner product (V-,V-) and

hence it admits a countable base (eq,...,ey,,...), orthonormal in (V-, V).
Setting V,, = span{ey,...,e,}, every w € V can be written as
n
W =w,+ ) wje; where w, =Y wje; €V, (4.4¢)
ji>n j=1

for scalar w;. If u € V is a solution of (4.1) in the sense of (4.4)-(4.5), the latter
holds for ¢ = e;. In the resulting expression write u in the form (4.4c), and
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notice that the terms involving > .. wu,e; tend to zero as n — oco. This sug-

ji>n
gests defining an approximate solution of (4.1) a function u,, € V,,, satisfying
(4.5) for p =e;, foralli =1,...,n, ie.,

n

> {1// Ve; : Veidx +/ e - (un - V)ejdx
E B

Jj=1

+/ ei~(b~V)ejdac+/ ei~(ej~V)bdm}”uj:/g-eidac.
E E E

]

The elements {---};; are the entries of a n x n matrix (7;;(u,)). The right
hand side defines a vector (¢1,...,9n) € R”, identified with g, € V,,. More
generally, for w,, € V,, define Tij(wn) as T;j(uy), with w,, replacing u,,, and
seek solutions (uq,...,u,) € R™ of

Tij(wn)u; =¢;, for i=1,...,n. (4.5¢)

The corresponding u,, € V,, is a solution of T(w,,u,) = g,. The Galerkin
approximations of (4.1) is function u,, € V,, satisfying

(T(Un,Un), ©,) = (8n,p,) forall o, €V,. (4.6¢)

Proposition 4.2c
(i). For all n there exists a Galerkin approximation u, to (4.1).
(ii). A sequence {u,} of Galerkin approzimations is equibounded in V.
(iii). Any u in the weak closure of {u,} is a solution of (4.1).

Prove the proposition by the following steps:

Step 1. Use (4.2¢) to prove that det (Tij(wn)) > %u, for all w,, € V,,.
Therefore, for all g,, € V,, there exists a unique u,, € V,, satisfying (4.5¢).

Step 2. Introduce the map B(w,) = u, from R" into itself. Prove that
such a map and its inverse B™! are well defined and continuous in R”.

Step 3. Use (4.3c) to prove that map B~! maps the ball of radius

2y [ang + ||Vl + ||buz} /v into itself.

Step 4. Therefore, B(-) has a fixed point by the Brouwer fixed point theorem
(see [2]). Any such fixed point, identified with an element u,, € V,,, solves
(4.6¢).

Step 5. Use (4.3¢) to prove that ||[Vu,||2 < 2y [||f||% +v||Vb|2 + |bli7| /v

for all n € N. Therefore, the embedding {u,} C LP(E;R?) is compact for
all 1 < p<6.

Step 6. Having fixed u in the weak closure of {u,}, a subsequence can be
selected and relabeled with n, such that {Vu, } — Vu weakly in L?(E;R?)
and {u,,} — u strongly in L*(E;R3).

Step 7. Let n — oo in (4.6¢), justifying the limits of each term, to establish
the existence of a solution of (4.1) in the form (4.5).
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4.2¢ Extending Fields a € W2:2(9E;R3), Satisfying (4.2) into
Solenoidal Fields b € W12 (E;R3)

We will prove the following result.

Proposition 4.3c Let E be a bounded, simply connected, open set in RN
(N = 2, 3) with boundary OF of class C* having one connected component,
and satisfying the segment property. For every vector field a € W%’Q(BE; RN)

satisfying
/ a-ndo =0,
OE

where n is the outward unit normal to OF, there exists a wvector field ¥ €
W22(E;RYN) such that b = curlv is an extension of a into E. The function
Y can be chosen to be compactly supported about OE. Furthermore, for every
fized € > 0 the vector field ¥ can be chosen so that for everyu eV

[llul| curl#p|]]2 < X(€)||Vul2 in E, (4.7¢)

where X(e) — 0 as € — 0. Finally if a € CF(OE;RY), for some k = 1,...,
and OF is of class C*1, then v can be taken of class CK+1(E;RY).

We need some preliminary Lemmas. The first and the second ones are
taken from [15], Chapter III, Section 6. In the last one, we follow the approach
developed in [23], Chapter 1, Section 2 and in [13], Lemma 2.1; see also [16],
Chapter VIII, Section 4.

Lemma 4.1c Let E be a bounded, open set in RY and let

d(z) = dist(z, OF).

1

For any € > 0 define v(e) = exp () Then, there exists a function ¢, €
€

C>(E) such that

lpe(z)| <1 for allz € E,

pe(x) =1 if 8(x) < 7*(e)/(2k1),
pe(z) =0 if 6(z) > 2v(e),
IVpe()| < koe/d(x) for allx € E,

where K1, ko depend only on N.

Proof. We first recall the following result, for whose proof we refer to [47],
Chapter VI, Theorem 2:

There exists a function p € C*°(E) such that for all z € E
L. o(x) < p(x);

2. for any partial derivative of order a, || > 0, we have

1Dp(2)] < Fjpa[0(x)] 1,
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where all 441 depend only on o and N.
Now consider the function & : R — R defined by

1 if t<~%(e),
£ty = eln (12) if 42(e) < t < (o),
0 if ¢t > ~(e).

Now, choose n = 7?(€)/2, a mollifier j,, and consider the mollified function
Ze =& * jy. It is not hard to check that

Z.(t) =1for t <~+*(e)/2,
Z(t) =0 for t > 27(e),
|Z(t)] <1forallt €R,
El(t)| <eftforallt € R.

We now let o.(x) = Zc(p(x)); taking into account 1. and 2. above and the
bound on |Z’|, we conclude that

(x) =1 if §(z) < ~%(e)/2k1,
pe(z) =0 if §(z) > 27(e),
Ve (x)| < koe/p(x) < koe/d(x) forallz e E,

for proper, positive k1 and kg, which depend only on N. [ |

Lemma 4.2c Let E C RY be a bounded, Lipschitz, open set. Then, there
exists ¢ = c(E) such that for all u € W}*(E) we have

u
1512 < cllVullz,

where 6 = §(x) is the function, which has been defined above.

Proof. By density it suffices to assume u € CS°(FE). By the theory of Sobolev
spaces, for every open set E' CC F, we have

[ull2;mr < e1 || Vull2;E,

where ¢; = ¢1(N, E). In order to conclude, we have to take into account the
behavior close to the boundary dE. We recall that a bounded domain E ¢ RV
is said to be a Lipschitz domain, if there exists a radius r,, such that for each
y € OF, in an appropriate coordinate system,

ENBg,(y) = {z = (2',25) € RY : 2y > (2")} N B, (y),
OE N Bg,, (y) = {x = (¢, zy) € RN : 2y, = &(2')} N Bg,, (v),
where @ is a Lipschitz function, with ||V®| e < L. The quantities r, and L

are independent of y € OF. We say that L is the Lipschitz constant of E.
If we set
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G(y) =EnN BST'O (y)a
it is not hard to check that Jea = c2(E), such that

Vz € Gy) xy —P(2') < cxd(x).

Therefore, if we let y = (¢, y~), and B]._(y’) denotes the (N — 1)-dimensional
ball centered at 3’, we have

1
lu(z)]? de < 62/
/G<y) 6%(z) By, (&)
and the wanted estimate follows from the one-dimensional inequality
| h(t)]9 > |dh
[y o |
0 ta q—1J, |dt

which holds for any h € C5°(R,) and for any ¢ > 1, and which can be easily
proved integrating the identity

dxy,

w [T izl
B(z") |z — P(a')]?

q
dt,

tt=a ¢
1—q%

[hOI7 _ d {th h(t)|7.

== h(t)?| —
2 o

Lemma 4.3c Let E be a bounded, simply connected, open set in RNV (N =
2, 3) with boundary OF of class C*, having one connected component, and
satisfying the segment property. For every vector field a € W%’Q(aE;RN)
satisfying

/ a-ndo =0, (4.8¢)
OE

where n is the outward unit normal to OF, there exists a vector field w €
W22(E;RYN) such that a = curl w in the sense of traces on OE. Moreover,

IWlwz2g) < cllallwi/zz@om), (4.9¢)
where ¢ depends on N and E.

Proof. For the moment we assume JF smooth, without further specification,
to the extent that all the necessary operations can be performed. At the end
we will briefly discuss how conditions can be relaxed in a way that all the
needed estimates are still justified.

First we consider the case N = 3; later on we will briefly deal with NV = 2,
which is considerably simpler. Let n be the outward unit normal to 0F and
rewrite a as

a=a,t+a,n,

where a,, = a-n and a, is the component of a tangential to OF.
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We first look for a solenoidal vector field by : E — R? by € W12(E;R3),
such that
b1 = V(p in E]7
b;-n=a, on JF.

Since divb; = 0, this implies that ¢ is a solution of

Ap=0 in E,
g—z:an on OF.

This is a Neumann problem for the Laplacean in E, and condition (4.8c)
ensures that a solution ¢ € W#2(E) exists, up to an arbitrary constant. Hence
b; € WH2(E;R3) is well-defined. Moreover, since E is simply connected, by
well-known results, there exists w; € W22(E;R3) such that

b; = curl wy.

If we now let
b ¥y 4 by,

the vector b is completely determined, if by solves

divb, =0 in F,
(4.10¢)
bg =a-— b1 on BE,
taking into account that, by construction,
(a—by)-n=0 on OF. (4.11¢)

In order to explain the main ideas underlying the construction of by, we first
consider the simple situation of

E = {(:L‘l,xg,xg,) €R3: xr3 > 0}, OF = {(:L‘hxg,l‘g) €R3: Tr3 = 0},

before dealing with general F and OF. At this step E is not bounded, but it
is immaterial for what we are going to do. We have

a=ay(z1,r2)e1 + az(x1, x2)es + az(xy, x2)es,

b1 =b11(21, 22, x3)e1 + b1 2(x1, 22, x3)e2 + b1 3(21, T2, x3)e3,
where by 3(x1, 22,0) = ag(x1,22). By (4.11c), we have
a-— b1|aE = (a1(z1,z2) — b11(z1, 22,0))e1 + (a2(z1, z2) — b12(x1, T2,0))eq.
If we let

hi(z1,22) = a;(z1,x2) — b1 (21, 22) for i =1,2, hs(xy,22) =0,
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and by = curl wo, solving (4.10c) reduces to determining wo : E — R3,
wy € W22(E;R3), such that curl W2|I3:0 = h in the sense of traces, i.e.

0 0
505273 (w1,22,0) — ;1;232 (x1,22,0) = hi(r1,22)
ow ow
a;’l (w1,22,0) a;’s (w1,22,0) = ha(z1,22)
ow ow
63)2172 (xlax270) 8.7322’1 (1'171'2)0) - 0
Choosing
Ows 3 Ows 3 Ows 2 Ows 1
: 0) = : 0) = ’ 0) = : ,x2,0) =0
6.131 ($1,$2, ) a$2 (1'175523 ) 8.131 (1’1,%2, ) 6.132 (1'1 T2 )
yields
0
;U;é2 ($17$2,0) - hl(mlaxQ)
an’l(Jc x2,0) = ha(z1,x2)
8%3 1, 2 - 2 15 2

If we assume that ws1(z1,22,0) = wa2(z1,22,0) = w2 3(r1,22,0) = 0, we
conclude that a solution is given by

wo1(21, T2, x3) = w3ha(T1,22)
wo,2(x1, T2, x3) = —w3hi(x1, 22)

wa,3(x1, 2, x3) = 0.

Notice that wa(x1,x2,0) = 0 for any (z1,72) € R%. The vector field we were
looking for is then

b = curl wy + curl wy = curl(wy + wa) = curl w.

Now, we turn to consider the case of a general simply connected, bounded open
set E C R3, with smooth boundary OF having one connected component. As
before, we can proceed with the construction of the vector field by = Vo =
curl wyi, so that it only remains to determine wy in this new context.

Consider a partition of the unity for the set E, namely a collection of C*°
functions v with compact support Ay, such that

Zwk(x) =1 VzekE.
%

Without loss of generality, we can assume each 1, to be defined on all R?. Let
OF), be the intersection of F with the domain where v, # 0, provided such
a domain has indeed a non-empty intersection with OF. For each fixed 1, we
can now introduce a smooth change of variables (y1 k, Y2k, Y3,k) such that in
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the new coordinates, OE}, is the graph of y3 = 0 in a compact set D;, C R?,
and the coordinate system is orthogonal on 0Fj.

If we let (a — by)r = ¢¥r(a — by), we are going to build a vector field
(bg)i = curl(wz) such that (bg)r = (a —by), on OF, and

b = curlw; + Z(bQ)k = curlw; + Zcurl(wQ)k.
k k

Take (a — by)g, perform the previously mentioned change of variables that
flattens the portion OFj of the boundary dF, and let hy be the restriction on
ys = 0 of the new vector field thus obtained. By construction, hy has compact
support, and we also have hy, = (h1,x(y1,y2), ha2.x(y1,¥2),0).

Consider P = P(z%,x5,2%) € OE. If P € 0E\OEy, then (a—bq),(P) =0
and we can take (wa)i(P) = V(wa)i(P) = 0.

On the other hand, if P € 0F}, then the corresponding point

Q = Q(y},y5,0) € supp hy,

and we can proceed with the construction of (ws); as we have done before
for the set E = {y3 > 0}. The vector field (wa)r = (W2)x(y1, Y2, y3) vanishes
as (y1,y2) € Dy, but there is no condition on y3. On the other hand, a careful
inspection of the construction for £ = {y3 > 0} shows that if we consider a
function f € C°(R) with f(0) = 0, f(0) = 1, supp f = [-r,r] and r > 0
arbitrary, also the vector field

wa 1(x1, 2, x3) = f(x3)he(21,22)
w2,2($1,$2,5ﬂ3) = —f($3)h1($1,$2)

wa 3(x1, 2, x3) = 0.

is a solution. Therefore, the support of (w2)x(y) can be contained in a neigh-
borhood of Dy, of height r. Once (w2)x(y) has been built, applying the inverse
change of variable, we obtain (bs)g(z) = curl(ws)g(z).

Since we have defined (w2);(P) in two different ways, namely taking into
account whether P € OFE\OE) or P € 0Ey, we still need to check that the
values of (wq) and its derivatives are all compatible. Again, a careful control
of the proof, shows that the only requirement is that the tangential derivatives
have to vanish, and this is surely satisfied by our construction.

As for the smoothness of (ws)g, it is a direct consequence of the smooth-
ness of a, and also of the smoothness of JF, which affects the regularity of
the change of variables. In particular, if OF is of class C! and has the seg-
ment property, and a € W%’Q(GE), then it is a matter of straightforward
computations to see that the previous construction yields b € W12(E) and
b = curlw; + curl wy with wy, wo € W22(E). As for (4.9¢), it is a conse-
quence of standard elliptic estimates.

On the other hand, if we consider regularity in the class of continuous
functions, once more it is relatively easy to see, as pointed out in [23], that if
OF is a C? surface and a is continuous on OF, then b is continuous on E.
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When E C R2?, things are much easier. Recalling that E is simply con-
nected, we look for b in the form

_ (9w _Ow
- (9.1?2’ 81‘1 '

The condition b| op = agives the values of % and %—i’ on OF. From the values

of g—’j on OF, we determine w on OF up to an arbitrary constant, and w is a
single valued continuous function, as

8—de:/ a-ndo =0.
OF

0
Once we know w|aE and 371:|8E7 we can finally build w in E. [ ]

4.3c Proof of Proposition 4.3c

By Lemma 4.3c, if N = 3 there exists w € W22(E) (if N = 2, we have
w € W22(E)) such that curlw(z) = a(z) for any x € OF. For any € > 0, let

e € C°°(F) be the function built in Lemma 4.1c and set

P def wew, b =curly = curl(p.w).

By construction p € W?22(E), it is compactly supported about E, and for
any x € OF we have

YP(z) =w(z) = curly(z)=curlw(z)=a(z).
Moreover, due to its very definition, and to (4.9¢)

| curlp||wrz(m) < cllallwi/zzom)-
It remains to show the validity of (4.7¢). Lemma 4.1c yields

b(z)| < Wjﬂw(m» +|Vw(z)| if d(z) < 27(e),

and
b(x) =0 if §(x) > 27(e).

By the Sobolev embedding Theorem

(w(@)] < el[wllz2,

IVwliz < cllwllzz,
and by (4.9¢) this implies

wi(z)| + I9wlls < e lallws 2200 (4.120)
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Therefore, for every u € V., we have

1
Il curl ]2 <e elalls 2205 | 5ull

+ (/ |u|2|Vw|2dx>
5(x)<2v(e)

1
<celallwirzzom |l 5ullz + [[Vulll Vwlis £,

1
2

where
def

E.={zeE: ix) <2y}
Due to (4.12c), we have that ((e) def IVw||3,z. vanishes as e — 0, whereas
Lemma 4.2¢ yields ||67 ull2 < ¢||Vul|z; therefore, we can conclude

lTullcurl [l < ¢ (ellalwr/22@m) + C(6) [Vullz = X(e) [ Vul2,

where X(€) — 0 as ¢ — 0.

4.4c The Case of a General Domain F

We briefly discuss what happens, when £ ¢ RY, N = 2, 3, is not simply
connected, and/or the boundary JF has multiple connected components I7,
i=1,...,m with m > 1.

Consequently, the natural compatibility condition on the velocity v at the
boundary JF, required by the incompressibility of the fluid, is

a-ndo = /a-ndon,

where n is the outward unit normal to OF, whereas the argument we have
presented above (which is Leray’s original argument in [26]) works if the con-
dition
Vi=1,...,m /a-ndazO
I

holds, which is obviously stronger. Moreover, such a stricter requirement does
not allow for the presence of extended sinks and sources into the region of
flow, which is physically interesting. The question of whether the problem
we have considered here, admits a solution only under the natural restriction
is a fundamental question in the mathematical theory of the Navier-Stokes
equations.

We refrain from further elaborating on this issue here. The reader inter-
ested in the solenoidal extension to a bounded open set which is not simply
connected, and/or has a boundary with multiple connected components, can
refer, for example, to [13], Section 2 and to [16], Chapter VIIL.
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5c Recovering the Pressure

5.1c Proof of Proposition 5.1 for u € H+ N C>=(E;R3?)

Pick w € C2°(E;R?). Then curlw € V and hence, by the membership u €
H*, and by integration by parts

/u-curlwdx:—/curlu-wdxzo for all w € C°(E;R?).
E E

By density this continues to hold for all w € L?(E;R?). Therefore if u €
H+ N CP(E;R?) then curlu = 0 in E. Since F is assumed to be convex,
denoting by m the coordinates in R3, the latter is a necessary and sufficient
condition for the differential form du = u - dn to be exact in E. Having fixed
x,y € F consider a smooth path from y to z, i.e.,

Yoy = {n € C (e, B); R?], m(a) =y, n(B) = z; |n'| > 0.}

The path integral

p(z,y) = /V

is independent of v, ,, and, for a fixed y € E, uniquely defines a function
p(-,y) satisfying Vp(-,y) = u. Moreover, for any y;,y2 € E, by the stated
independence of the path integral, p(-,y2) = p(-,y1) + p(y1,y2). Since u €
C>(E;R?) one has p(-,y) € C*(E). To establish the proposition in the case
ue H-NCO>®(E;R?), fix y € E and determine the function £ 3 x — p(z,y)
up to a constant.

B
du = / u(n(s)) - n'(s)ds (5.1¢)

z,y

5.2c Proof of Proposition 5.1 for u € H+
Having fixed u € H*, regard it as defined in R? by extending it to zero outside
E. Pick w € C$°(E), and for € > 0 denote by w, = J. * w the e-mollification

of w by the Friedrich’s mollifying kernel J.(-). We choose € sufficiently small,
such that w. € C2°(E;R?) and curl w, restricted to E is in H. Since u € H+

O:/u-curlwedm:/ u-curlw.dz
E R3

:/ ue-curlwdx:/ue-curlwdac
R3 E

:—/ curlu. -wdzx =0
E

for all w € C°(E;R3). By density this continues to hold for all w € L?(E;R3).
Therefore, curlu, = 0 in E, and the path integral
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P, yi€) = / du, = / e (n(s)) - (5)ds

z,y
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is independent of 7, , C E. For a fixed y € E, such an integral uniquely defines
a function p(-,y;e) satisfying Vp(-,y;e) = u.. Moreover, for any y1,y2 €
E, by the stated independence of the path integral, p(-,yo;¢) = p(-,y1;€) +

(Y1, Y25 €).

Proposition 5.1c There exists p(-,-) € L?(E x E) and a subnet {p(-,;€')} C

{p(-,;€)}, relabeled with € such that as € — 0

(e, 5€) = p(-, ) in L>(Ex E) and a.e. in Ex E

p(y;€) = p(,y) in L*(E) for a.e. y€FE

p(z,y2) = p(x,y1) + p(y1,y2) a.e. in ExXE (5.2¢)
Vp(,y;€) = Vp(,y) weakly in L*(E) for a.e. y€ E
Vp(,y)=u for a.e. y € E.

We rely on the following result.

Lemma 5.1c There holds:
[p(: -5 €)

uniformly in €.

omxp < 2V2r diam(E) 2 |ul|op < 227 diam(E)? |[ul|2;z

Proof. Fix € > 0 and in computing p(z, y; €) from (5.1c) take the segment

_ Ty
lz —y|

(0,]z—y])>s > y+sv where v

For such a choice, and Holder’s inequality

|z—y|
P (2, ;) < diam(E) / ucl2(y + sv)ds.
0

Integrate both sides in dx over E, and compute the resulting integral on
the right-hand side in polar coordinates with pole at y and angular variable v
ranging over the unit sphere of R3. Denote by R(y, ) the polar representation
of OF with pole at y and set also z = y+sv so that the polar radius is s = |z—y|

and ranges over (07 R(y, 1/)) This gives
R(y,v)
IOl s < diam(B [ ([ a4 sv)ds)av
lv|=1 0

R(y,v) 2
= diam(E)? / (/ ue@E g — y|>du
v||=1 0

I |z —y?

= diam(E)? /E [u(z)

EET R

‘ 2
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Next, integrate both sides in dy over E and estimate the resulting integral on
the right-hand side by making use of Fubini’s theorem to obtain

I 5) B < (B [ Juc(e)Pzsup [ sy
z€EE |z — y
< 8w diam(E / luc(2)]2dz
< 8 diam(E)* [ull3.p.
The last inequality follows from the properties of the mollifying kernels. H
Corollary 5.1c For all positive €1, €
Ip(-s -5 €1) = (s €2) asmxs < 22w diam(E)? [[ue, — g, |2 -
Proof (of Proposition 5.1c). Since {u.} is Cauchy in L?(E;R3) the net

{p(-,-;€)} is Cauchy in L?*(E x E) and by the completeness of L*(E x E)
there exists p(-,-) € L?(E x E) such that

lim |[p(-,-;€) — p(-, )
e—0

Subnets can now be selected satisfying the first three statements in (5.2c). Fix
y € E for which the second of (5.2c) holds and for ¢ € C°(E;R?) compute

lim (Vp(-,y;€), € r2(m) = lim —(p(-, y; €), div €} 12(m)
= <u7C>L2(E) = _<p(7y)7d1VC>L2(E)

5.3c More General Versions of Proposition 5.1

5.1. Convexity of E has been used in the previous proof, in order to conclude
that du is exact. Prove that Proposition 5.1c continues to hold if E is not
convex, but any two points z,y € F can be connected by a smooth curve
Yz,y C E of length not exceeding a fixed constant L. This would include
bounded, simply connected sets E with smooth boundary JF.

5.2. If E is unbounded let E,, = E N {|z| < n} and assume that each E,
satisfies the condition in 5.1 with the constant L,, possibly depending on
n. State and prove a local version of Proposition 5.1.

5.3. The Helmholtz-Weyl decomposition, sometimes also referred to as
Hodge decomposition, can be actually proven for any open set £ C RV,
if one works in L?(E;RY), as it is the case here (see [15], § IIL.1). The
situation is more complicated if one works in LP(E;RY) with p € (1, ),
p# 2.
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8c Time-Dependent Navier-Stokes Equations in
Bounded Domains

In Section 8 we considered the Navier-Stokes equations in Er with E C R3
an open, bounded set with smooth boundary, and stated Hopf’s 1951 result
about the existence of weak solutions of the initial-boundary value problem
(8.1) (20]).

As a matter of fact, the first result about the existence of weak solutions
dates back to 1934 and is due to Leray ([27]), who studied the problem in the
whole space R? with divergence free initial condition u, € L?(R?). Somehow,
the more difficult case was solved first.

10c Selecting Subsequences Strongly Convergent in
L*(Er)

Lemma 10.1c (Friedrichs [14]) Let Q C RY be a cube of edge L and let
u € WhP(Q) for some 1 < p < N. For every € > 0 there exist a positive
integer k. depending only on € and L, and independent of u, and k. linearly
independent functions {ab,}s=, C LP(Q) such that

ks
[ullp.o < >
;@ =

/Qu Wy da]” <Vl (10.1¢)

Remark 10.1c The conclusion continues to hold if u € W1P(FE), where E is
a bounded open set in RV . Indeed F can be included in a cube Q and, since
u has zero trace on JF, it can be extended in the whole cube by setting it to
be zero outside E.

10.1c Proof of Friedrichs Lemma

The starting point is Poincaré inequality which we state next. Let

7 fe=
U = — udr = 4 udx
7Rl o Q

denote the integral average of u over Q.

Theorem 10.1c (Poincaré Inequality). Let u € WHP(Q). There exists a

constant v depending only on the dimension N and p, such that
Np

N—-p

[ —ugllp..@ <VNVullpg  where  p. = (10.2¢)

Proof. See [6], Chapter 10, § 10.1. [ ]
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Corollary 10.1c Let u € WYP(Q). There exists a constant v depending only
on the dimension N and p, such that

[u = ugllpo < VL[ Vullpq- (10.3¢)
Proof. Apply Hélder’s inequality to ||u — ug||p.q and use (10.2c). [ |

Let k be a positive integer to be chosen and subdivide Q in £” equal subcubes
Q¢, with pairwise disjoint interior and edge L/k. Then compute and estimate

BN kN
/ wrde =3 [ jupde = & [ g +ug Pz
Q =1 Q( = QZ

k\N@P-1) k
§2p_1( ) ‘ udm —|—2p ! Z |u—uQZ\pdx
L Qe

< Z ’/’U,l/}gdx + 2P 1L / |VulPdzx
Lr=vrs

= Z ‘/ uwgdx‘p—i—s/ |Vu|Pdx
=1"'JQ Q

where we have set

=1 fk\ N . L
¢g:2pp (Z) Xq, and e =n~2P IE. [ |

10.2¢ Compact Embedding of WP into LI(Q) for 1 < q < p.

e Prove a version of (10.3c) with the left-hand side replaced by ||u —ug||¢.0
for 1 < g < py.

e Prove a version of Friedrichs lemma with the left-hand side of (10.1c)
replaced by [[ullyq-

e Use such a version to prove the indicated compact embedding.

If E is bounded, give conditions on OF so that u € W1P(E) can be extended
into a cube containing F with u € W1P(Q).

10.3c Solutions Global in Time
Let f € L?(Er; R?). Prove that a Hopf solution of (8.1) satisfies

Ivt)llze < [[Voll2;e + [Ifll2;E,
for a.e. t € (0,7). (10.4¢)

1
< —(IVollaz + |IEl|2:5,
u\/i(H s + [Ifll2e,)

If f € L2(R*; L2(E;R3)), then (8.1) has a weak solution global in time, i.e.,
in F x RT. Moreover, such a solution satisfies the energy estimates (10.4c) for
all t € RT.
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11c The Limiting Process and Proof of Theorem 8.1

In Section 11 we underlined that the strong convergence is needed to pass to
the limit in the non-linear term. We now discuss a counterexample, in order
to show that weak convergence in general does not suffice.

In particular, we consider a sequence {v,(z,t)} C L*(0,T;WY%(E)) N
L>(0,T; L?(E)) which satisfies the Navier-Stokes equations (8.1) with f = 0
in the weak sense of (8.2). Moreover, we assume that

a) = vp(x,t) € C°(E) for a.e. t, uniformly in n;

b) 8;;;3 (z,t) € L>®(E7), k=1,2,...,N, h € N, uniformly in n;
k

¢) 2 Av, € L®(Er), uniformly in n.

In spite of the great regularity of a)-b)-c), we show that we do not have

/ / Vi V)v, - godzdt%/ / v-V)v-pdxdt,

where v is the weak limit of v,, in L?(E7), and ¢ € C°(Er; RY).
The counterexample is built in the following way. Let ¢ be harmonic in E,
i.e. it satisfies div Vi = Ay = 0. Set

Vn(2,t) = an(t) Vi),
where
{a,} € L*°(0,T) uniformly in n, and {a,} C C'(0,T).

Then v, satisfies (a)-(b)-(c) above. Moreover, v,, satisfies the Navier-Stokes
equations, that is

/ / )V - gadacdt—/ an(t /AV?,/J ) - @ dxdt

T 2
oY 0%
2 _ —
+/O a, (t) I e e wdxdt =1 + I, + I3 = 0,

for every ¢ € C>(0,T;V). Indeed, we have I; = I = 0 trivially (we rely on
the integration by parts in I). For I5 we have

oY 0% RN NN,
i=1

1
:—7/ |V |2 div g dz = 0.
2 /e

Consider now a sequence {a, } C L°°(0,T) such that [a,(t)|z20,r) = 1 and

an(t) — 0 weakly in L?(0,7T); for example, we could take a,(t) = /2 sin 2t

Then
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vp(x,t) = a,(H)ViYp — 0
weakly in L?(Er), but if we consider a general ¢ € C°(Er;RY)

/OT/E(VR.V)vn.cpd:z:dt ;/OTai(f) [/EV(W?MQ)"PCZI] gt

1 .
) Hafn”ZL?(o’T) </ |V¢2dlvgoda:>
E

—% </E Vz/J|2div<pdx) £ 0.

12c Higher Integrability and Some Consequences

12.1. Explain why (8.2) holding for all ¢ € C*°(0,T’; V) implies (12.2) holding
weakly for all ¢ € C°(Ep;RY).

13c Energy Identity for the Homogeneous Boundary
Value Problem with Higher Integrability

The proof of Proposition 13.1 essentially gives a way of taking ¢ = v in the
weak formulation (8.2).

Proposition 13.1c Let v be a weak solution of (8.2),. Assume moreover that
v € LP9(Ep;RYN) with p > N and q > 2 satisfying (12.3). Then v satisfies
the energy estimates (10.4c).

By the same token, Proposition 14.1 can be extended several ways. For exam-
ple, one may permit f not to be zero, or the boundary data for v and u not to
be zero, provided w = (v — u) has zero trace on OF. State and prove version
of such facts by writing the corresponding weak formulation for w and taking
(¢ = w in the indicated approximate sense. This is possible by the assumed
higher integrability on both v and u and hence w. For N = 2 such a higher
integrability assumption is redundant.

15¢c Local Regularity of Solutions with Higher
Integrability

The proofs of Theorem 15.1 in [40, 49] are based on a smart study of the
vorticity equation (18.2). This is why the pressure does not appear in the
statement. A careful analysis of the proof shows that the transport term is
dealt with, as if it were an external force.

For a different approach see [38], and also the references therein. Moreover,
in [38] Seregin extends his formulation of the regularity estimates up to the
boundary under homogeneous Dirichlet conditions on a half cylinder.
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16¢c Proof of Theorem 15.1 - Introductory Results

Proposition 16.1c Let k € LP? (RN x RM;R) and g € L29 (RN x RM;R)
with N, M > 1, and

1 1 1 1 1 1
1§Q§7’7 1§q/§7'/a 7+7:7+1a -
p q r

Then for the double convolution

h(z,t) d:ef//RN o k(x — &t —71)g(&,7)dedr

we have
allrr < M1kllpp 19lg,q -

Proof. First of all, consider the convolution only in one variable, namely
(k=*g)( / k(x — €) dg,

where k € LP(RY), g € LY(RY), and 2 + % =1 4 1. We have

(ke g)(a |—]/ (¢ g(é“)dé“‘

< [ =l 1ol de
= [ ke =P g1 itz ~ )

r—-p
s

e,

9(§)

If we apply Holder’s inequality, we conclude that

() < | [ bt - OPla(e)ia "

P r—q

Lo =era 7 [
= e-ortora e

Raising both sides to the power r yields

r—gq
lglla”

(G < [ [ ke - Orla(@irae] 1l lol

If we now integrate with respect to x, we have
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[ a@rae< [ g [ ke - ora a

I Nl

and we conclude that
1k *gllr < Ellpllgllq- (16.1c)

The previous proof holds for any N > 1; inequality (16.1c) is usually known as
Young’s inequality for the convolution. Now, we want to consider the double
convolution with respect to (z,t) € RY x RM namely

h(z,t) = //]RN o k(x —&,t—71)g(&,7)dedr.

‘We have

il =| [
<[ L

For simplicity, let us set for the moment

r 1/r
/ / Kz — €t — 7)g(€, 7) dedr dx}
RN xRM

T 1/7’
dr] dx} .

k(x =&t —T7)g(&,7)dE

RN

/]RN k(.’L‘—f,t—T)g(f,T) df = f(l‘,tﬂ').

Then, we have

()], < (/RN [/RM |f(x,t,7)|d7yda;>1/r.

We can apply the continuous Minkowski inequality (see, for example, [6, Chap-
ter 6, Prop. 3.3]) to obtain

IOl < [ 1) dr

/RJM

< [ It =)l

/ Kz — €.t — r)g(é,7) de
RN

dr
-

where we have taken (16.1c) into account. Let us momentarily set

u(t —7) = [kt =7)llp,  v(7) = lg(7)llq-

We can rewrite
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b)), < / u(t — Tyo(r) dr = (u % v)(t).
R

Once more, by (16.1¢) we conclude

1/r'
Il = ([ IO at) = ol <l ol
RM

, 1/p , 1/¢'
_ ( [ =i dt) ( [ sl dr) = Kl g
RM RM

Proposition 16.2¢c Let k € LP? (RN x R;R) and g € L9 (2 x (t1,t5); R)
with N > 1, 2 a bounded domain in RN, (t1,t3) C (0,00), and

q,q"-

1 1 1 1 1 1
1<qg<r, 1<¢<r, —+-=-+1, =
p q r

Then for the double convolution
def
met)™ [[ ke gt-mngendedn (@t 2x (0,t)
QX(tl,tQ)

we have

17

[ < (IR

p 19llg.q-

Proof. Same as in Proposition 16.1c

20c Recovering the Pressure in the Time-Dependent
Equations

In Section 20 we study the regularity of the pressure p for weak solutions of
(8.1) in E7, where E is a bounded, smooth domain of R3.

In the whole space R? the situation is definitely simpler, and we sketch how
the analogous corresponding result can be obtained. We follow an argument
given in [3].

If we take the divergence of (8.1), we obtain

3 (92
Ap = — iz:: 781'13$J (vivj)

in the sense of distributions in R? x (0,7'), and therefore, in R? x {t} for a.e.
te(0,T).

Here p is the sum of classical singular integral operators applied to v;v;.
By the Calderén-Zygmund theory (see [47]), we have
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T T
/ Ip|? dadt < C(q) / VP ge (10).
0 R3 0 R3

By the corresponding result in R® x (0, T') of Lemma 8.1 we have v € L% (R3 x
(0,7)), and therefore we conclude that p € L3 (R? x (0,T)).
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