
tutorial.djangogirls.org

Introduction to HTML · Django Girls
Tutorial

DjangoGirls

8-10 minuti

What's a template, you may ask?

A template is a file that we can re-use to present different

information in a consistent format – for example, you could use a

template to help you write a letter, because although each letter

might contain a different message and be addressed to a

different person, they will share the same format.

A Django template's format is described in a language called

HTML (that's the HTML we mentioned in the first chapter, How

the Internet works).

What is HTML?

HTML is a simple code that is interpreted by your web browser –

such as Chrome, Firefox or Safari – to display a web page for the

user.

HTML stands for "HyperText Markup Language". HyperText

means it's a type of text that supports hyperlinks between pages.

Markup means we have taken a document and marked it up with

code to tell something (in this case, a browser) how to interpret

the page. HTML code is built with tags, each one starting with <

and ending with >. These tags represent markup elements.

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

1 di 9 13/11/2017, 20:01

Your first template!

Creating a template means creating a template file. Everything is

a file, right? You have probably noticed this already.

Templates are saved in blog/templates/blog directory. So

first create a directory called templates inside your blog

directory. Then create another directory called blog inside your

templates directory:

blog

└───templates

 └───blog

(You might wonder why we need two directories both called blog

– as you will discover later, this is simply a useful naming

convention that makes life easier when things start to get more

complicated.)

And now create a post_list.html file (just leave it blank for

now) inside the blog/templates/blog directory.

See how your website looks now: http://127.0.0.1:8000/

If you still have an error TemplateDoesNotExist, try to restart

your server. Go into command line, stop the server by pressing

Ctrl+C (Control and C keys together) and start it again by running

a python manage.py runserver command.

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

2 di 9 13/11/2017, 20:01

No error anymore! Congratulations :) However, your website isn't

actually publishing anything except an empty page, because your

template is empty too. We need to fix that.

Add the following to your template file:

blog/templates/blog/post_list.html

<html>

<p>Hi there!</p>

<p>It works!</p>

</html>

So how does your website look now? Visit it to find out:

http://127.0.0.1:8000/

It worked! Nice work there :)

The most basic tag, <html>, is always the beginning of any web

page and </html> is always the end. As you can see, the whole

content of the website goes between the beginning tag <html>

and closing tag </html>

<p> is a tag for paragraph elements; </p> closes each

paragraph

Head and body

Each HTML page is also divided into two elements: head and

body.

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

3 di 9 13/11/2017, 20:01

head is an element that contains information about the document

that is not displayed on the screen.

body is an element that contains everything else that is

displayed as part of the web page.

We use <head> to tell the browser about the configuration of the

page, and <body> to tell it what's actually on the page.

For example, you can put a web page title element inside the

<head>, like this:

blog/templates/blog/post_list.html

<html>

<head>

<title>Ola's blog</title>

</head>

<body>

<p>Hi there!</p>

<p>It works!</p>

</body>

</html>

Save the file and refresh your page.

Notice how the browser has understood that "Ola's blog" is the

title of your page? It has interpreted <title>Ola's

blog</title> and placed the text in the title bar of your

browser (it will also be used for bookmarks and so on).

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

4 di 9 13/11/2017, 20:01

Probably you have also noticed that each opening tag is matched

by a closing tag, with a /, and that elements are nested (i.e. you

can't close a particular tag until all the ones that were inside it

have been closed too).

It's like putting things into boxes. You have one big box, <html>

</html>; inside it there is <body></body>, and that contains

still smaller boxes: <p></p>.

You need to follow these rules of closing tags, and of nesting

elements – if you don't, the browser may not be able to interpret

them properly and your page will display incorrectly.

Customize your template

You can now have a little fun and try to customize your template!

Here are a few useful tags for that:

<h1>A heading</h1> for your most important heading

<h2>A sub-heading</h2> for a heading at the next level

<h3>A sub-sub-heading</h3> …and so on, up to <h6>

<p>A paragraph of text</p>

text emphasizes your text

text strongly emphasizes your text

 goes to another line (you can't put anything inside br)

link creates

a link

first itemsecond item

makes a list, just like this one!

<div></div> defines a section of the page

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

5 di 9 13/11/2017, 20:01

Here's an example of a full template, copy and paste it into

blog/templates/blog/post_list.html:

blog/templates/blog/post_list.html

<html>

<head>

<title>Django Girls blog</title>

</head>

<body>

<div>

<h1>Django Girls

Blog</h1>

</div>

<div>

<p>published: 14.06.2014, 12:14</p>

<h2>My first post

</h2>

<p>Aenean eu leo quam. Pellentesque

ornare sem lacinia quam venenatis vestibulum.

Donec id elit non mi porta gravida at eget

metus. Fusce dapibus, tellus ac cursus commodo,

tortor mauris condimentum nibh, ut fermentum

massa justo sit amet risus.</p>

</div>

<div>

<p>published: 14.06.2014, 12:14</p>

<h2>My second post

</h2>

<p>Aenean eu leo quam. Pellentesque

ornare sem lacinia quam venenatis vestibulum.

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

6 di 9 13/11/2017, 20:01

Donec id elit non mi porta gravida at eget

metus. Fusce dapibus, tellus ac cursus commodo,

tortor mauris condimentum nibh, ut f.</p>

</div>

</body>

</html>

We've created three div sections here.

The first div element contains the title of our blog – it's a

heading and a link

Another two div elements contain our blogposts with a

published date, h2 with a post title that is clickable and two ps

(paragraph) of text, one for the date and one for our blogpost.

It gives us this effect:

Yaaay! But so far, our template only ever displays exactly the

same information – whereas earlier we were talking about

templates as allowing us to display different information in the

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

7 di 9 13/11/2017, 20:01

same format.

What we really want to do is display real posts added in our

Django admin – and that's where we're going next.

One more thing: deploy!

It'd be good to see all this out and live on the Internet, right? Let's

do another PythonAnywhere deploy:

Commit, and push your code up to Github

First off, let's see what files have changed since we last deployed

(run these commands locally, not on PythonAnywhere):

command-line

$ git status

Make sure you're in the djangogirls directory and let's tell git

to include all the changes within this directory:

command-line

$ git add --all .

--all means that git will also recognize if you've deleted files

(by default, it only recognizes new/modified files). Also remember

(from chapter 3) that . means the current directory.

Before we upload all the files, let's check what git will be

uploading (all the files that git will upload should now appear in

green):

command-line

$ git status

We're almost there, now it's time to tell it to save this change in

its history. We're going to give it a "commit message" where we

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

8 di 9 13/11/2017, 20:01

describe what we've changed. You can type anything you'd like at

this stage, but it's helpful to type something descriptive so that

you can remember what you've done in the future.

command-line

$ git commit -m "Changed the HTML for the site."

Make sure you use double quotes around the commit message.

Once we've done that, we upload (push) our changes up to

GitHub:

command-line

$ git push

Pull your new code down to PythonAnywhere, and reload

your web app

Open up the PythonAnywhere consoles page and go to your

Bash console (or start a new one). Then, run:

command-line

$ cd ~/my-first-blog

$ git pull

[...]

And watch your code get downloaded. If you want to check that

it's arrived, you can hop over to the Files tab and view your code

on PythonAnywhere.

Finally, hop on over to the Web tab and hit Reload on your web

app.

Your update should be live! Go ahead and refresh your website

in the browser. Changes should be visible. :)

Introduction to HTML · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/html/

9 di 9 13/11/2017, 20:01

tutorial.djangogirls.org

Introduction to Python · Django Girls
Tutorial

DjangoGirls

26-33 minuti

Part of this chapter is based on tutorials by Geek Girls Carrots

(https://github.com/ggcarrots/django-carrots).

Let's write some code!

Python prompt

For readers at home: this part is covered in the Python Basics:

Integers, Strings, Lists, Variables and Errors video.

To start playing with Python, we need to open up a command line

on your computer. You should already know how to do that – you

learned it in the Intro to Command Line chapter.

Once you're ready, follow the instructions below.

We want to open up a Python console, so type in python on

Windows or python3 on Mac OS/Linux and hit enter.

command-line

$ python3

Python 3.6.1 (...)

Type "help", "copyright", "credits" or "license"

for more information.

>>>

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

1 di 31 13/11/2017, 19:53

Your first Python command!

After running the Python command, the prompt changed to >>>.

For us this means that for now we may only use commands in

the Python language. You don't have to type in >>> – Python will

do that for you.

If you want to exit the Python console at any point, just type

exit() or use the shortcut Ctrl + Z for Windows and Ctrl +

D for Mac/Linux. Then you won't see >>> any longer.

For now, we don't want to exit the Python console. We want to

learn more about it. Let's start with something really simple. For

example, try typing some math, like 2 + 3 and hit enter.

command-line

>>> 2 + 3

5

Nice! See how the answer popped out? Python knows math! You

could try other commands like:

4 * 5

5 - 1

40 / 2

To perform exponential calculation, say 2 to the power 3, we

type:

command-line

>>> 2 ** 3

8

Have fun with this for a little while and then get back here. :)

As you can see, Python is a great calculator. If you're wondering

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

2 di 31 13/11/2017, 19:53

what else you can do…

Strings

How about your name? Type your first name in quotes like this:

command-line

>>> "Ola"

'Ola'

You've now created your first string! It's a sequence of characters

that can be processed by a computer. The string must always

begin and end with the same character. This may be single (') or

double (") quotes (there is no difference!) The quotes tell Python

that what's inside of them is a string.

Strings can be strung together. Try this:

command-line

>>> "Hi there " + "Ola"

'Hi there Ola'

You can also multiply strings with a number:

command-line

>>> "Ola" * 3

'OlaOlaOla'

If you need to put an apostrophe inside your string, you have two

ways to do it.

Using double quotes:

command-line

>>> "Runnin' down the hill"

"Runnin' down the hill"

or escaping the apostrophe with a backslash (\):

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

3 di 31 13/11/2017, 19:53

command-line

>>> 'Runnin\' down the hill'

"Runnin' down the hill"

Nice, huh? To see your name in uppercase letters, simply type:

command-line

>>> "Ola".upper()

'OLA'

You just used the upper method on your string! A method (like

upper()) is a sequence of instructions that Python has to

perform on a given object ("Ola") once you call it.

If you want to know the number of letters contained in your name,

there is a function for that too!

command-line

>>> len("Ola")

3

Wonder why sometimes you call functions with a . at the end of

a string (like "Ola".upper()) and sometimes you first call a

function and place the string in parentheses? Well, in some

cases, functions belong to objects, like upper(), which can only

be performed on strings. In this case, we call the function a

method. Other times, functions don't belong to anything specific

and can be used on different types of objects, just like len().

That's why we're giving "Ola" as a parameter to the len

function.

Summary

OK, enough of strings. So far you've learned about:

the prompt – typing commands (code) into the Python prompt

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

4 di 31 13/11/2017, 19:53

results in answers in Python

numbers and strings – in Python numbers are used for math

and strings for text objects

operators – like + and *, combine values to produce a new one

functions – like upper() and len(), perform actions on

objects.

These are the basics of every programming language you learn.

Ready for something harder? We bet you are!

Errors

Let's try something new. Can we get the length of a number the

same way we could find out the length of our name? Type in

len(304023) and hit enter:

command-line

>>> len(304023)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: object of type 'int' has no len()

We got our first error! It says that objects of type "int" (integers,

whole numbers) have no length. So what can we do now? Maybe

we can write our number as a string? Strings have a length,

right?

command-line

>>> len(str(304023))

6

It worked! We used the str function inside of the len function.

str() converts everything to strings.

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

5 di 31 13/11/2017, 19:53

The str function converts things into strings

The int function converts things into integers

Important: we can convert numbers into text, but we can't

necessarily convert text into numbers – what would

int('hello') be anyway?

Variables

An important concept in programming is variables. A variable is

nothing more than a name for something so you can use it later.

Programmers use these variables to store data, make their code

more readable and so they don't have to keep remembering what

things are.

Let's say we want to create a new variable called name:

command-line

>>> name = "Ola"

You see? It's easy! It's simply: name equals Ola.

As you've noticed, your program didn't return anything like it did

before. So how do we know that the variable actually exists?

Simply enter name and hit enter:

command-line

>>> name

'Ola'

Yippee! Your first variable! :) You can always change what it

refers to:

command-line

>>> name = "Sonja"

>>> name

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

6 di 31 13/11/2017, 19:53

'Sonja'

You can use it in functions too:

command-line

>>> len(name)

5

Awesome, right? Of course, variables can be anything – numbers

too! Try this:

command-line

>>> a = 4

>>> b = 6

>>> a * b

24

But what if we used the wrong name? Can you guess what would

happen? Let's try!

command-line

>>> city = "Tokyo"

>>> ctiy

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'ctiy' is not defined

An error! As you can see, Python has different types of errors

and this one is called a NameError. Python will give you this

error if you try to use a variable that hasn't been defined yet. If

you encounter this error later, check your code to see if you've

mistyped any names.

Play with this for a while and see what you can do!

The print function

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

7 di 31 13/11/2017, 19:53

Try this:

command-line

>>> name = 'Maria'

>>> name

'Maria'

>>> print(name)

Maria

When you just type name, the Python interpreter responds with

the string representation of the variable 'name', which is the

letters M-a-r-i-a, surrounded by single quotes, ''. When you say

print(name), Python will "print" the contents of the variable to

the screen, without the quotes, which is neater.

As we'll see later, print() is also useful when we want to print

things from inside functions, or when we want to print things on

multiple lines.

Lists

Beside strings and integers, Python has all sorts of different

types of objects. Now we're going to introduce one called list.

Lists are exactly what you think they are: objects which are lists

of other objects. :)

Go ahead and create a list:

command-line

>>> []

[]

Yes, this list is empty. Not very useful, right? Let's create a list of

lottery numbers. We don't want to repeat ourselves all the time,

so we will put it in a variable, too:

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

8 di 31 13/11/2017, 19:53

command-line

>>> lottery = [3, 42, 12, 19, 30, 59]

All right, we have a list! What can we do with it? Let's see how

many lottery numbers there are in a list. Do you have any idea

which function you should use for that? You know this already!

command-line

>>> len(lottery)

6

Yes! len() can give you a number of objects in a list. Handy,

right? Maybe we will sort it now:

command-line

>>> lottery.sort()

This doesn't return anything, it just changed the order in which

the numbers appear in the list. Let's print it out again and see

what happened:

command-line

>>> print(lottery)

[3, 12, 19, 30, 42, 59]

As you can see, the numbers in your list are now sorted from the

lowest to highest value. Congrats!

Maybe we want to reverse that order? Let's do that!

command-line

>>> lottery.reverse()

>>> print(lottery)

[59, 42, 30, 19, 12, 3]

Easy, right? If you want to add something to your list, you can do

this by typing this command:

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

9 di 31 13/11/2017, 19:53

command-line

>>> lottery.append(199)

>>> print(lottery)

[59, 42, 30, 19, 12, 3, 199]

If you want to show only the first number, you can do this by

using indexes. An index is the number that says where in a list

an item occurs. Programmers prefer to start counting at 0, so the

first object in your list is at index 0, the next one is at 1, and so

on. Try this:

command-line

>>> print(lottery[0])

59

>>> print(lottery[1])

42

As you can see, you can access different objects in your list by

using the list's name and the object's index inside of square

brackets.

To delete something from your list you will need to use indexes

as we learned above and the pop() method. Let's try an

example and reinforce what we learned previously; we will be

deleting the first number of our list.

command-line

>>> print(lottery)

[59, 42, 30, 19, 12, 3, 199]

>>> print(lottery[0])

59

>>> lottery.pop(0)

59

>>> print(lottery)

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

10 di 31 13/11/2017, 19:53

[42, 30, 19, 12, 3, 199]

That worked like a charm!

For extra fun, try some other indexes: 6, 7, 1000, -1, -6 or -1000.

See if you can predict the result before trying the command. Do

the results make sense?

You can find a list of all available list methods in this chapter of

the Python documentation: https://docs.python.org/3/tutorial

/datastructures.html

Dictionaries

For readers at home: this part is covered in the Python Basics:

Dictionaries video.

A dictionary is similar to a list, but you access values by looking

up a key instead of a numeric index. A key can be any string or

number. The syntax to define an empty dictionary is:

command-line

>>> {}

{}

This shows that you just created an empty dictionary. Hurray!

Now, try writing the following command (try substituting your own

information, too):

command-line

>>> participant = {'name': 'Ola', 'country':

'Poland', 'favorite_numbers': [7, 42, 92]}

With this command, you just created a variable named

participant with three key–value pairs:

The key name points to the value 'Ola' (a string object),

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

11 di 31 13/11/2017, 19:53

country points to 'Poland' (another string),

and favorite_numbers points to [7, 42, 92] (a list with

three numbers in it).

You can check the content of individual keys with this syntax:

command-line

>>> print(participant['name'])

Ola

See, it's similar to a list. But you don't need to remember the

index – just the name.

What happens if we ask Python the value of a key that doesn't

exist? Can you guess? Let's try it and see!

command-line

>>> participant['age']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'age'

Look, another error! This one is a KeyError. Python is helpful

and tells you that the key 'age' doesn't exist in this dictionary.

When should you use a dictionary or a list? Well, that's a good

point to ponder. Just have a solution in mind before looking at the

answer in the next line.

Do you just need an ordered sequence of items? Go for a list.

Do you need to associate values with keys, so you can look them

up efficiently (by key) later on? Use a dictionary.

Dictionaries, like lists, are mutable, meaning that they can be

changed after they are created. You can add new key–value

pairs to a dictionary after it is created, like this:

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

12 di 31 13/11/2017, 19:53

command-line

>>> participant['favorite_language'] = 'Python'

Like lists, using the len() method on the dictionaries returns the

number of key–value pairs in the dictionary. Go ahead and type

in this command:

command-line

>>> len(participant)

4

I hope it makes sense up to now. :) Ready for some more fun

with dictionaries? Read on for some amazing things.

You can use the pop() method to delete an item in the

dictionary. Say, if you want to delete the entry corresponding to

the key 'favorite_numbers', just type in the following

command:

command-line

>>> participant.pop('favorite_numbers')

[7, 42, 92]

>>> participant

{'country': 'Poland', 'favorite_language':

'Python', 'name': 'Ola'}

As you can see from the output, the key–value pair

corresponding to the 'favorite_numbers' key has been deleted.

As well as this, you can also change a value associated with an

already-created key in the dictionary. Type this:

command-line

>>> participant['country'] = 'Germany'

>>> participant

{'country': 'Germany', 'favorite_language':

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

13 di 31 13/11/2017, 19:53

'Python', 'name': 'Ola'}

As you can see, the value of the key 'country' has been

altered from 'Poland' to 'Germany'. :) Exciting? Hurrah! You

just learned another amazing thing.

Summary

Awesome! You know a lot about programming now. In this last

part you learned about:

errors – you now know how to read and understand errors that

show up if Python doesn't understand a command you've given it

variables – names for objects that allow you to code more easily

and to make your code more readable

lists – lists of objects stored in a particular order

dictionaries – objects stored as key–value pairs

Excited for the next part? :)

Compare things

For readers at home: this part is covered in the Python Basics:

Comparisons video.

A big part of programming involves comparing things. What's the

easiest thing to compare? Numbers, of course. Let's see how

that works:

command-line

>>> 5 > 2

True

>>> 3 < 1

False

>>> 5 > 2 * 2

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

14 di 31 13/11/2017, 19:53

True

>>> 1 == 1

True

>>> 5 != 2

True

We gave Python some numbers to compare. As you can see, not

only can Python compare numbers, but it can also compare

method results. Nice, huh?

Do you wonder why we put two equal signs == next to each other

to compare if numbers are equal? We use a single = for

assigning values to variables. You always, always need to put

two of them – == – if you want to check if things are equal to

each other. We can also state that things are unequal to each

other. For that, we use the symbol !=, as shown in the example

above.

Give Python two more tasks:

command-line

>>> 6 >= 12 / 2

True

>>> 3 <= 2

False

> and < are easy, but what do >= and <= mean? Read them like

this:

x > y means: x is greater than y

x < y means: x is less than y

x <= y means: x is less than or equal to y

x >= y means: x is greater than or equal to y

Awesome! Wanna do one more? Try this:

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

15 di 31 13/11/2017, 19:53

command-line

>>> 6 > 2 and 2 < 3

True

>>> 3 > 2 and 2 < 1

False

>>> 3 > 2 or 2 < 1

True

You can give Python as many numbers to compare as you want,

and it will give you an answer! Pretty smart, right?

and – if you use the and operator, both comparisons have to be

True in order for the whole command to be True

or – if you use the or operator, only one of the comparisons has

to be True in order for the whole command to be True

Have you heard of the expression "comparing apples to

oranges"? Let's try the Python equivalent:

command-line

>>> 1 > 'django'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: '>' not supported between instances

of 'int' and 'str'

Here you see that just like in the expression, Python is not able to

compare a number (int) and a string (str). Instead, it shows a

TypeError and tells us the two types can't be compared together.

Boolean

Incidentally, you just learned about a new type of object in

Python. It's called Boolean, and it is probably the easiest type

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

16 di 31 13/11/2017, 19:53

there is.

There are only two Boolean objects:

True

False

But for Python to understand this, you need to always write it as

'True' (first letter uppercase, with the rest of the letters

lowercased). true, TRUE, and tRUE won't work – only True is

correct. (The same applies to 'False' as well, of course.)

Booleans can be variables, too! See here:

command-line

>>> a = True

>>> a

True

You can also do it this way:

command-line

>>> a = 2 > 5

>>> a

False

Practice and have fun with Booleans by trying to run the following

commands:

True and True

False and True

True or 1 == 1

1 != 2

Congrats! Booleans are one of the coolest features in

programming, and you just learned how to use them!

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

17 di 31 13/11/2017, 19:53

For readers at home: this part is covered in the Python Basics:

Saving files and "If" statement video.

So far we've been writing all our python code in the interpreter,

which limits us to entering one line of code at a time. Normal

programs are saved in files and executed by our programming

language interpreter or compiler. So far we've been running our

programs one line at a time in the Python interpreter. We're

going to need more than one line of code for the next few tasks,

so we'll quickly need to:

Exit the Python interpreter

Open up our code editor of choice

Save some code into a new python file

Run it!

To exit from the Python interpreter that we've been using, simply

type the exit() function

command-line

>>> exit()

$

This will put you back into the command prompt.

Earlier, we picked out a code editor from the code editor section.

We'll need to open the editor now and write some code into a

new file:

editor

print('Hello, Django girls!')

Obviously, you're a pretty seasoned Python developer now, so

feel free to write some code that you've learned today.

Now we need to save the file and give it a descriptive name. Let's

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

18 di 31 13/11/2017, 19:53

call the file python_intro.py and save it to your desktop. We can

name the file anything we want, but the important part here is to

make sure the file ends in .py. The .py extension tells our

operating system that this is a Python executable file and

Python can run it.

Note You should notice one of the coolest thing about code

editors: colors! In the Python console, everything was the same

color; now you should see that the print function is a different

color from the string. This is called "syntax highlighting", and it's

a really useful feature when coding. The color of things will give

you hints, such as unclosed strings or a typo in a keyword name

(like the def in a function, which we'll see below). This is one of

the reasons we use a code editor. :)

With the file saved, it's time to run it! Using the skills you've

learned in the command line section, use the terminal to change

directories to the desktop.

On a Mac, the command will look something like this:

command-line

$ cd ~/Desktop

On Linux, it will be like this (the word "Desktop" might be

translated to your local language):

command-line

$ cd ~/Desktop

Change directory: Windows Command Prompt

On Windows Command Prompt, it will be like this:

command-line

> cd %HomePath%\Desktop

Change directory: Windows Powershell

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

19 di 31 13/11/2017, 19:53

And on Windows Powershell, it will be like this:

command-line

> cd $Home\Desktop

If you get stuck, just ask for help.

Now use Python to execute the code in the file like this:

command-line

$ python3 python_intro.py

Hello, Django girls!

Note: on Windows 'python3' is not recognized as a command.

Instead, use 'python' to execute the file:

command-line

> python python_intro.py

Alright! You just ran your first Python program that was saved to

a file. Feel awesome?

You can now move on to an essential tool in programming:

If … elif … else

Lots of things in code should be executed only when given

conditions are met. That's why Python has something called if

statements.

Replace the code in your python_intro.py file with this:

python_intro.py

if 3 > 2:

If we were to save and run this, we'd see an error like this:

command-line

$ python3 python_intro.py

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

20 di 31 13/11/2017, 19:53

File "python_intro.py", line 2

 ^

SyntaxError: unexpected EOF while parsing

Python expects us to give further instructions to it which are

executed if the condition 3 > 2 turns out to be true (or True for

that matter). Let’s try to make Python print “It works!”. Change

your code in your python_intro.py file to this:

python_intro.py

if 3 > 2:

 print('It works!')

Notice how we've indented the next line of code by 4 spaces?

We need to do this so Python knows what code to run if the

result is true. You can do one space, but nearly all Python

programmers do 4 to make things look neat. A single tab will

also count as 4 spaces.

Save it and give it another run:

command-line

$ python3 python_intro.py

It works!

Note: Remember that on Windows, 'python3' is not recognized as

a command. From now on, replace 'python3' with 'python' to

execute the file.

What if a condition isn't True?

In previous examples, code was executed only when the

conditions were True. But Python also has elif and else

statements:

python_intro.py

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

21 di 31 13/11/2017, 19:53

if 5 > 2:

 print('5 is indeed greater than 2')

else:

 print('5 is not greater than 2')

When this is run it will print out:

command-line

$ python3 python_intro.py

5 is indeed greater than 2

If 2 were a greater number than 5, then the second command

would be executed. Easy, right? Let's see how elif works:

python_intro.py

name = 'Sonja'

if name == 'Ola':

 print('Hey Ola!')

elif name == 'Sonja':

 print('Hey Sonja!')

else:

 print('Hey anonymous!')

and executed:

command-line

$ python3 python_intro.py

Hey Sonja!

See what happened there? elif lets you add extra conditions

that run if the previous conditions fail.

You can add as many elif statements as you like after your

initial if statement. For example:

python_intro.py

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

22 di 31 13/11/2017, 19:53

volume = 57

if volume < 20:

 print("It's kinda quiet.")

elif 20 <= volume < 40:

 print("It's nice for background music")

elif 40 <= volume < 60:

 print("Perfect, I can hear all the details")

elif 60 <= volume < 80:

 print("Nice for parties")

elif 80 <= volume < 100:

 print("A bit loud!")

else:

 print("My ears are hurting! :(")

Python runs through each test in sequence and prints:

command-line

$ python3 python_intro.py

Perfect, I can hear all the details

Comments are lines beginning with #. You can write whatever

you want after the # and Python will ignore it. Comments can

make your code easier for other people to understand.

Let's see how that looks:

python_intro.py

if volume < 20 or volume > 80:

 volume = 50

 print("That's better!")

You don't need to write a comment for every line of code, but

they are useful for explaining why your code is doing something,

or providing a summary when it's doing something complex.

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

23 di 31 13/11/2017, 19:53

Summary

In the last few exercises you learned about:

comparing things – in Python you can compare things by using

>, >=, ==, <=, < and the and, or operators

Boolean – a type of object that can only have one of two values:

True or False

Saving files – storing code in files so you can execute larger

programs.

if … elif … else – statements that allow you to execute code only

when certain conditions are met.

comments - lines that Python won't run which let you document

your code

Time for the last part of this chapter!

Your own functions!

For readers at home: this part is covered in the Python Basics:

Functions video.

Remember functions like len() that you can execute in Python?

Well, good news – you will learn how to write your own functions

now!

A function is a sequence of instructions that Python should

execute. Each function in Python starts with the keyword def, is

given a name, and can have some parameters. Let's start with an

easy one. Replace the code in python_intro.py with the

following:

python_intro.py

def hi():

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

24 di 31 13/11/2017, 19:53

 print('Hi there!')

 print('How are you?')

hi()

Okay, our first function is ready!

You may wonder why we've written the name of the function at

the bottom of the file. This is because Python reads the file and

executes it from top to bottom. So in order to use our function, we

have to re-write it at the bottom.

Let's run this now and see what happens:

command-line

$ python3 python_intro.py

Hi there!

How are you?

Note: if it didn't work, don't panic! The output will help you to

figure why:

If you get a NameError, that probably means you typed

something wrong, so you should check that you used the same

name when creating the function with def hi(): and when

calling it with hi().

If you get an IndentationError, check that both of the print

lines have the same whitespace at the start of a line: python

wants all the code inside the function to be neatly aligned.

If there's no output at all, check that the last hi() isn't indented -

if it is, that line will become part of the function too, and it will

never get run.

Let's build our first function with parameters. We will use the

previous example – a function that says 'hi' to the person running

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

25 di 31 13/11/2017, 19:53

it – with a name:

python_intro.py

def hi(name):

As you can see, we now gave our function a parameter that we

called name:

python_intro.py

def hi(name):

if name == 'Ola':

 print('Hi Ola!')

elif name == 'Sonja':

 print('Hi Sonja!')

else:

 print('Hi anonymous!')

hi()

Remember: The print function is indented four spaces within

the if statement. This is because the function runs when the

condition is met. Let's see how it works now:

command-line

$ python3 python_intro.py

Traceback (most recent call last):

File "python_intro.py", line 10, in <module>

 hi()

TypeError: hi() missing 1 required positional

argument: 'name'

Oops, an error. Luckily, Python gives us a pretty useful error

message. It tells us that the function hi() (the one we defined)

has one required argument (called name) and that we forgot to

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

26 di 31 13/11/2017, 19:53

pass it when calling the function. Let's fix it at the bottom of the

file:

python_intro.py

hi("Ola")

And run it again:

command-line

$ python3 python_intro.py

Hi Ola!

And if we change the name?

python_intro.py

hi("Sonja")

And run it:

command-line

$ python3 python_intro.py

Hi Sonja!

Now, what do you think will happen if you write another name in

there? (Not Ola or Sonja.) Give it a try and see if you're right. It

should print out this:

command-line

Hi anonymous!

This is awesome, right? This way you don't have to repeat

yourself every time you want to change the name of the person

the function is supposed to greet. And that's exactly why we need

functions – you never want to repeat your code!

Let's do something smarter – there are more names than two,

and writing a condition for each would be hard, right?

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

27 di 31 13/11/2017, 19:53

python_intro.py

def hi(name):

 print('Hi ' + name + '!')

hi("Rachel")

Let's call the code now:

command-line

$ python3 python_intro.py

Hi Rachel!

Congratulations! You just learned how to write functions! :)

Loops

For readers at home: this part is covered in the Python Basics:

For Loop video.

This is the last part already. That was quick, right? :)

Programmers don't like to repeat themselves. Programming is all

about automating things, so we don't want to greet every person

by their name manually, right? That's where loops come in handy.

Still remember lists? Let's do a list of girls:

python_intro.py

girls = ['Rachel', 'Monica', 'Phoebe', 'Ola',

'You']

We want to greet all of them by their name. We have the hi

function to do that, so let's use it in a loop:

python_intro.py

for name in girls:

The for statement behaves similarly to the if statement; code

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

28 di 31 13/11/2017, 19:53

below both of these need to be indented four spaces.

Here is the full code that will be in the file:

python_intro.py

def hi(name):

 print('Hi ' + name + '!')

girls = ['Rachel', 'Monica', 'Phoebe', 'Ola',

'You']

for name in girls:

 hi(name)

 print('Next girl')

And when we run it:

command-line

$ python3 python_intro.py

Hi Rachel!

Next girl

Hi Monica!

Next girl

Hi Phoebe!

Next girl

Hi Ola!

Next girl

Hi You!

Next girl

As you can see, everything you put inside a for statement with

an indent will be repeated for every element of the list girls.

You can also use for on numbers using the range function:

python_intro.py

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

29 di 31 13/11/2017, 19:53

for i in range(1, 6):

 print(i)

Which would print:

command-line

1

2

3

4

5

range is a function that creates a list of numbers following one

after the other (these numbers are provided by you as

parameters).

Note that the second of these two numbers is not included in the

list that is output by Python (meaning range(1, 6) counts from

1 to 5, but does not include the number 6). That is because

"range" is half-open, and by that we mean it includes the first

value, but not the last.

Summary

That's it. You totally rock! This was a tricky chapter, so you

should feel proud of yourself. We're definitely proud of you for

making it this far!

You might want to briefly do something else – stretch, walk

around for a bit, rest your eyes – before going on to the next

chapter. :)

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

30 di 31 13/11/2017, 19:53

Introduction to Python · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_introduction/

31 di 31 13/11/2017, 19:53

tutorial.djangogirls.org

Python installation · Django Girls
Tutorial

DjangoGirls

5-7 minuti

We're finally here!

But first, let us tell you what Python is. Python is a very popular

programming language that can be used for creating websites,

games, scientific software, graphics, and much, much more.

Python originated in the late 1980s and its main goal is to be

readable by human beings (not only machines!). This is why it

looks much simpler than other programming languages. This

makes it easy to learn, but don't worry – Python is also really

powerful!

Note If you're using a Chromebook, skip this chapter and make

sure you follow the Chromebook Setup instructions.

Note If you already worked through the Installation steps, there's

no need to do this again – you can skip straight ahead to the

next chapter!

For readers at home: this chapter is covered in the Installing

Python & Code Editor video.

This section is based on a tutorial by Geek Girls Carrots

(https://github.com/ggcarrots/django-carrots)

Django is written in Python. We need Python to do anything in

Python installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_installation/

1 di 5 13/11/2017, 19:52

Django. Let's start by installing it! We want you to install Python

3.6, so if you have any earlier version, you will need to upgrade

it.

First check whether your computer is running a 32-bit version or

a 64-bit version of Windows, by pressing the Windows key +

Pause/Break key which will open your System info, and look at

the "System type" line. You can download Python for Windows

from the website https://www.python.org/downloads/windows/.

Click on the "Latest Python 3 Release - Python x.x.x" link. If your

computer is running a 64-bit version of Windows, download the

Windows x86-64 executable installer. Otherwise, download the

Windows x86 executable installer. After downloading the

installer, you should run it (double-click on it) and follow the

instructions there.

One thing to watch out for: During the installation you will notice a

window marked "Setup". Make sure you tick the "Add Python 3.6

to PATH" checkbox and click on "Install Now", as shown here:

In upcoming steps, you'll be using the Windows Command Line

(which we'll also tell you about). For now, if you need to type in

Python installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_installation/

2 di 5 13/11/2017, 19:52

some commands, go to Start menu → Windows System →

Command Prompt. You can also hold in the Windows key and

press the "R"-key until the "Run" window pops up. To open the

Command Line, type "cmd" and press enter in the "Run" window.

(On newer versions of Windows, you might have to search for

"Command Prompt" since it's sometimes hidden.)

Note: if you are using an older version of Windows (7, Vista, or

any older version) and the Python 3.6.x installer fails with an

error, you can try either:

install all Windows Updates and try to install Python 3.6 again; or1.

install an older version of Python, e.g., 3.4.6.2.

If you install an older version of Python, the installation screen

may look a bit different than shown above. Make sure you scroll

down to see "Add python.exe to Path", then click the button on

the left and pick "Will be installed on local hard drive":

Python installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_installation/

3 di 5 13/11/2017, 19:52

Note Before you install Python on OS X, you should ensure your

Mac settings allow installing packages that aren't from the App

Store. Go to System Preferences (it's in the Applications folder),

click "Security & Privacy," and then the "General" tab. If your

"Allow apps downloaded from:" is set to "Mac App Store,"

change it to "Mac App Store and identified developers."

You need to go to the website https://www.python.org/downloads

/release/python-361/ and download the Python installer:

Download the Mac OS X 64-bit/32-bit installer file,

Double click python-3.6.1-macosx10.6.pkg to run the installer.

It is very likely that you already have Python installed out of the

box. To check if you have it installed (and which version it is),

open a console and type the following command:

command-line

$ python3 --version

Python 3.6.1

If you have a different 'micro version' of Python installed, e.g.

3.6.0, then you don't have to upgrade. If you don't have Python

installed, or if you want a different version, you can install it as

follows:

Install Python: Debian or Ubuntu

Type this command into your console:

Python installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_installation/

4 di 5 13/11/2017, 19:52

command-line

$ sudo apt-get install python3.6

Use this command in your console:

command-line

$ sudo dnf install python3

If you're on older Fedora versions you might get an error that the

command dnf is not found. In that case you need to use yum

instead.

Use this command in your console:

command-line

$ sudo zypper install python3

Verify the installation was successful by opening a command

prompt and running the python3 command:

command-line

$ python3 --version

Python 3.6.1

NOTE: If you're on Windows and you get an error message that

python3 wasn't found, try using python (without the 3) and

check if it still might be a version of Python 3.6.

If you have any doubts, or if something went wrong and you have

no idea what to do next, please ask your coach! Sometimes

things don't go smoothly and it's better to ask for help from

someone with more experience.

Python installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/python_installation/

5 di 5 13/11/2017, 19:52

Compara due interi tra di loro e stamp il ris.
def ritorna_il_piu_grande(x,y):
 if x > y:
 #print(str(x) + " è più grande di " + str(y))
 return x
 # elif x == y:
 # print(str(x) + " è uguale a " + str(y))
 else:
 #print(str(x) + " è più piccolo di " + str(y))
 return y

Stampa in loop i numeri fino a max
def stampa_numeri(max):
 for i in range(0,max):
 print(i)

#stampa_numeri(10)

definisco lista di alunni
alunni = ['Giuliano','Robert',
 'Danile', 'Melania',
 'Vanessa', 'Simona',
 'Lucas', 'Andrea']

def add_students():
 # finché gli alunni sono meno di 10, aggiungi nuovo
 while len(alunni) < 10:
 alunni.append('Alunno')

 # Espelliamo Andrea a caso
 alunni.pop(7)
 alunni.sort()

 for nome in alunni:
 print(nome)

#add_students()

Saluta tutti
def salutatore():
 for nome in alunni:
 print("Ciao " + nome)
 return None

#salutatore()

Funzione che restituisce il quadrato dell'argomento
def f(x):
 y = x*x
 return y

y = f(2)

print(y)

	Introduction to HTML ˙ Django Girls Tutorial
	Introduction to Python ˙ Django Girls Tutorial
	Python installation ˙ Django Girls Tutorial
	Python-Examples

